Vol. 38

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-01-13

Subcell Method for Modeling Metallic Resonators in Metamaterials

By Larry Kevin Warne, William A. Johnson, Lorena I. Basilio, William L. Langston, and Michael B. Sinclair
Progress In Electromagnetics Research B, Vol. 38, 135-164, 2012
doi:10.2528/PIERB11111107

Abstract

This paper describes a subcell modeling technique for metallic resonators where the actual metal traces are replaced by a thin wire having equivalent magnetic and electric radii, as well as an impedance per unit length. The formulas for these quantities in the case of rectangular traces are given. In addition, the gap of a split-ring resonator is replaced by a lumped load. The response of the resonator can then be modeled using thin-wire algorithms in an integral equation code. It is demonstrated that the number of unknowns and runtime can be reduced by factors of a thousand using the subcell models. This is particularly important in cases where metamaterial designs with tapered properties are encountered and periodic boundary conditions are not applicable, because with this simplification larger numbers of resonator cells can be handled.

Citation


Larry Kevin Warne, William A. Johnson, Lorena I. Basilio, William L. Langston, and Michael B. Sinclair, "Subcell Method for Modeling Metallic Resonators in Metamaterials," Progress In Electromagnetics Research B, Vol. 38, 135-164, 2012.
doi:10.2528/PIERB11111107
http://www.jpier.org/PIERB/pier.php?paper=11111107

References


    1. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

    2. Grzegorczyk, T. M., C. D. Moss, J. Lu, X. Chen, J. Pacheco, Jr., and J. A. Kong, "Properties of left-handed metamaterials: Transmission, backward phase, negative refraction, and focusing," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 9, Sep. 2005.
    doi:10.1109/TMTT.2005.854261

    3. Johnson, W. A., L. K. Warne, L. I. Basilio, W. L. Langston, and M. B. Sinclair, Subcell models with applications to split-ring resonators, IEEE APS-Symp., Spokane, WA, Jun. 2011.

    4. Marcuvitz, N., Waveguide Handbook, 263-264, Peter Peregrinus, Ltd., London, 1986.
    doi:10.1049/PBEW021E

    5. Warne, L. K., "Eddy current power dissipation at sharp corners: Rectangular conductor examples," Electromagnetics, Vol. 15, 273-290, 1995.
    doi:10.1080/02726349508908419

    6. Abramowitz, M. and I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover, 231--233, 374--379, 589--592, Dover, New York, 1972.

    7. Warne, L. K., "Eddy current power dissipation at sharp corners," IEEE Trans. on Microwave Theory and Tech., Vol. 42, No. 2, Feb. 1994.
    doi:10.1109/22.275259

    8. Kaye, G. W. C. and T. H. Laby, Tables of Physical and Chemical Constants, 117, Longman Scientific & Technical, John Wiley & Sons, Inc., New York, 1989.

    9. Cockcroft, J. D., "Skin effect in rectangular conductors at high frequencies," Proceedings Royal Society, Vol. 122, 533-542, 1929.
    doi:10.1098/rspa.1929.0038

    10. Warne, L. K. and W. A. Johnson, Asymptotic expansion of the impedance per unit length of thin strip conductors, Sandia National Laboratories, 2005.

    11. Johnson, W. A., L. I. Basilio, J. D. Kotulski, R. E. Jorgenson, L. K. Warne, R. Coats, D. Wilton, N. Champagne, F. Capolino, J. Grant, and M. Khayat, EIGER: An open-source frequency domain electromagnetics code, IEEE APS-Symp., Honolulu, Hawaii, 2007.

    12. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potentials integrals," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 10, 3180-3190, Oct. 2005.
    doi:10.1109/TAP.2005.856342

    13. Warne, L. K. and K. C. Chen, "Slot apertures having depth and losses described by local transmission line theory," IEEE Trans. on Electromagnetic Compatibility, Vol. 32, No. 3, 185-196, Aug. 1990.
    doi:10.1109/15.57112

    14. Chen, K. C. and L. K. Warne, "A uniformly valid loaded antenna theory," IEEE Trans. on Antennas and Propagation, Vol. 40, No. 11, 1313-1323, Nov. 1992.
    doi:10.1109/8.202709

    15. Schelkunoff, S. A., Antenna Theory and Practice, 302--322, 361--388, 584--585, John Wiley & Sons, Inc., New York, 1952.

    16. Hallén, E., Electromagnetic Theory, Section 35.3, 61--64, Chapman and Hall, London, 1962.

    17. Warne, L. K. and K. C. Chen, "Effective impedance of bolt loads on narrow slot apertures having depth," Electromagnetic Waves and Applications, Vol. 6, No. 7, 891-910, 1992.

    18. Warne, L. K., Low frequency capacitance of a tubular dipole, Sandia National Laboratories Internal Report, to R. H. Bonn, Dec. 14, 1990.

    19. Chen, K. C. and L. K. Warne, "Improved asymptotic expansions of time domain antenna current," Radio Science, Vol. 26, No. 3, 1205-1208, Sep.--Oct. 1991.

    20. Gradshteyn, I. S. and I. M. Ryzhik (eds.), Table of Integrals Series and Products, 420, Academic Press, New York, 1965.

    21. Warne, L. K. and K. C. Chen, "Equivalent antenna radius for narrow slot apertures having depth," IEEE Trans. on Antennas and Propagation, Vol. 37, No. 7, 824-834, 1989.
    doi:10.1109/8.29376

    22. Shelton, D. J., D. W. Peters, M. B. Sinclair, I. Brenner, L. K. Warne, L. I. Basilio, K. R. Coffee, and G. D. Boreman, "Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials," Optics Express, Vol. 18, No. 2, Jan. 18, 2010.