Vol. 38

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-01-09

"Natural" Definition of the Modal Impedances in Non-Homogeneous Dielectric Loaded Rectangular Waveguide

By Leonardo Zappelli
Progress In Electromagnetics Research B, Vol. 38, 23-37, 2012
doi:10.2528/PIERB11112202

Abstract

In this paper, the definition of the modal impedances of the electromagnetic field in a nonhomogeneously filled waveguide is discussed. The presence of TM modal impedances, which are functions of the transverse coordinate, does not permit us to obtain a unique Z matrix of these guides. Hence, the evaluation of the scattering matrix can be involved. The introduction of a {``natural" EM} expansion overcomes this problem leading to the definition of a unique modal impedance and a unique Z matrix. This approach is applied to the simulation of the effect of a block of dielectric in an empty waveguide by ``cascading" the $S$ matrices of the existing junctions. Finally, this {``natural" EM} expansion is applied to the junction between an empty waveguide and a completely filled waveguide, obtaining an equivalent circuit which better represents the physics of this problem, and to the optical fibers.

Citation


Leonardo Zappelli, ""Natural" Definition of the Modal Impedances in Non-Homogeneous Dielectric Loaded Rectangular Waveguide," Progress In Electromagnetics Research B, Vol. 38, 23-37, 2012.
doi:10.2528/PIERB11112202
http://www.jpier.org/PIERB/pier.php?paper=11112202

References


    1. Jöstingmeier, A. and A. S. Omar, "Analysis of inhomogenously filled cavities coupled to waveguides using the VIE formulation," IEEE Trans. on Microwave Theory Tech., Vol. 41, No. 6, 1207-1214, 1993.
    doi:10.1109/22.238547

    2. Esteban, H., S. Cogollos, V. E. Boria, A. S. Blas, and M. Ferrando, "A new hybrid mode-matching/numerical method for the analysis of arbitrarily shaped inductive obstacles and discontinuities in rectangular waveguides," IEEE Trans. on Microwave Theory Tech., Vol. 50, No. 4, 1219-1224, 2002.
    doi:10.1109/22.993428

    3. Baillargeat, D., S. Verdeyme, M. Aubourg, and P. Guillon, "CAD applying the finite-element method for dielectric-resonator filters," IEEE Trans. on Microwave Theory Tech., Vol. 46, No. 1, 10-17, 1998.
    doi:10.1109/22.654917

    4. Macchiarella, G., M. Fumagalli, and S. C. d'Oro, "A new coupling structure for dual mode dielectric resonators," IEEE Microwave Guided Wave Lett., Vol. 10, No. 12, 523-525, 2000.
    doi:10.1109/75.895090

    5. Weily, A. R and A. S. Mohan, "Microwave filters with improved spurious performance based on sandwiched conductor dielectric resonators," IEEE Trans. on Microwave Theory Tech., Vol. 49, No. 8, 1501-1507, 2001.
    doi:10.1109/22.939933

    6. Pitarch, J., J. M. Catalá-Civera, F. L. Peñaranda-Foix, and M. A. Solano, "Efficient modal analysis of bianisotropic waveguides by the coupled mode method," IEEE Trans. on Microwave Theory Tech., Vol. 55, No. 1, 108-116, 2007.
    doi:10.1109/TMTT.2006.888576

    7. Monsoriu, J. A., B. Gimeno, E. Silvestre, and M. V. Andrés, "Analysis of inhomogeneously dielectric filled cavities coupled to dielectric-loaded waveguides: Application to the study of NRD-guide components," IEEE Trans. on Microwave Theory Tech., Vol. 52, No. 7, 1693-1701, 2004.
    doi:10.1109/TMTT.2004.830484

    8. Akhtar, M. J., L. E. Feher, and M. Thumm, "A closed-form solution for reconstruction of permittivity of dielectric slabs placed at the center of a rectangular waveguide," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 122-126, 2007.
    doi:10.1109/LGRS.2006.887054

    9. Van der Kruk, J., "Properties of surface waveguides derived from inversion of fundamental and higher mode dispersive GPR data," IEEE Trans. on Geoscience and Remote Sensing, Vol. 44, No. 10, 2908-2915, 2006.
    doi:10.1109/TGRS.2006.877286

    10. Van der Kruk, J., S. A. Arcone, and L. Liu, "Fundamental and higher mode inversion of dispersed GPR waves propagating in an ice layer," IEEE Trans. on Geoscience and Remote Sensing, Vol. 45, No. 8, 2483-2491, 2007.
    doi:10.1109/TGRS.2007.900685

    11. Moller, D., S. Hensley, G. A. Sadowy, C. D. Fisher, T. Michel, M. Zawadzki, and E. Rignot, "The Glacier and land ice surface topography interferometer: An airborne proof-of-concept demonstration of high-precision ka-band single-pass elevation mapping," IEEE Trans. on Geoscience and Remote Sensing, Vol. 49, No. 2, 827-842, 2011.
    doi:10.1109/TGRS.2010.2057254

    12. Taherian, M. R., D. J. Yuen, T. M. Habashy, and J. A. Kong, "A coaxial-circular waveguide for dielectric measurement," IEEE Trans. on Geoscience and Remote Sensing, Vol. 29, No. 2, 321-330, 1991.
    doi:10.1109/36.73675

    13. Fujita, S., M. Shiraishi, and S. Mae, "Measurement on the dielectric properties of acid-doped ice at 9.7 GHz," IEEE Trans. on Geoscience and Remote Sensing, Vol. 30, No. 4, 799-803, 1992.
    doi:10.1109/36.158875

    14. Chuah, H. T., K. Y. Lee, and T. W. Lau, "Dielectric constants of rubber and oil palm leaf samples at X-band," IEEE Trans. on Geoscience and Remote Sensing, Vol. 33, No. 1, 221-223, 1995.
    doi:10.1109/36.368205

    15. Frasch, L. L., S. J. McLean, and R. G. Olsen, "Electromagnetic properties of dry and water saturated basalt rock, 1--110 GHz," IEEE Trans. on Geoscience and Remote Sensing, Vol. 36, No. 3, 754-766, 1998.
    doi:10.1109/36.673669

    16. Vaccaneo, D., L. Sambuelli, P. Marini, R. Tascone, and R. Orta, "Measurement system of complex permittivity of ornamental rocks in L frequency band," IEEE Trans. on Geoscience and Remote Sensing, Vol. 42, No. 11, 2490-2498, 2004.
    doi:10.1109/TGRS.2004.835225

    17. Williams, D. F. and R. B. Marks, "Reciprocity relations in waveguide junctions," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 6, 1105-1110, 1993.
    doi:10.1109/22.238534

    18. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., McGraw-Hill Series in Electrical Engineering, 1992.

    19. Marcuvitz, N., Waveguide Handbook, McGraw-Hill, New York, 1951.

    20. Williams, D. F. and B. K. Alpert, "Causality and waveguide circuit theory," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 4, 615-623, 2001.
    doi:10.1109/22.915434

    21. Olyslager, F., D. De Zutter, and A. T. de Hoop, "New reciprocal circuit model for lossy waveguide structures based on the orthogonality of the eigenmodes," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2261-2269, 1994.
    doi:10.1109/22.339751

    22. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, 1991.

    23. Kerns, D. M., "Definition of v, i, Z, Y, a, b, Γ, and S," Proceedings of the IEEE, Vol. 55, No. 6, 892-900, 1967.
    doi:10.1109/PROC.1967.5704

    24. Gerini, G., M. Guglielmi, and G. Lastoria, Efficient integral equation formulations for admittance or impedance representations of planar waveguide junctions, IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1747-1750, Baltimore, Maryland, 1998.

    25. Gerini, G. and L. Zappelli, "Phased arrays of rectangular apertures on conformal cylindrical surfaces: A multimode equivalent network approach," IEEE Trans. on Antennas and Propagation, Vol. 52, No. 7, 1843-1850, 2004.
    doi:10.1109/TAP.2004.831311

    26. Gerini, G. and L. Zappelli, "Multilayer array antennas with integrated frequency selective surfaces conformal to a circular cylindrical surface," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 6, 2020-2030, 2005.
    doi:10.1109/TAP.2005.848459

    27. Rozzi, T. E. and W. F. G. Mecklenbrauker, "Wide-band network modeling of interacting inductive irises and steps," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 2, 235-245, 1975.
    doi:10.1109/TMTT.1975.1128532

    28. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman and Hall, 1983.

    29. McLevige, W. V., T. Itoh, and R. Mittra, "New waveguide structures for millimeter-wave and optical integrated circuits," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 10, 788-794, 1975.
    doi:10.1109/TMTT.1975.1128684