Vol. 39
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-02-20
Inverse Scattering Shape Reconstruction of 3D Bacteria Using the Level Set Algorithm
By
Progress In Electromagnetics Research B, Vol. 39, 39-53, 2012
Abstract
Bacteria exist in a variety of groups of shapes, sizes, and single or multiple cell formations. In this paper, the level set shape reconstruction technique, the method of moments, and the marching cubes methods are integrated in the high frequency band for imaging three dimensional bacteria. The time step and the resolution of the marching cubes method are investigated to smooth the error function of the level set and hence speed up the convergence at high frequencies. The numerical results demonstrate the robustness of the level set algorithm for the detection of bacteria based on their shapes. The three dimensional shape reconstructions of unknown bacteria can be utilized to classify biological warfare agents.
Citation
Ahmed M. Hassan, Mohammad Reza Hajihashemi, and Magda El-Shenawee, "Inverse Scattering Shape Reconstruction of 3D Bacteria Using the Level Set Algorithm," Progress In Electromagnetics Research B, Vol. 39, 39-53, 2012.
doi:10.2528/PIERB11122108
References

1. Scholl, P. F., M. A. Leonardo, A. M. Rule, M. A. Carlson, M. D. Antoine, and T. J. Buckley, "The development of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the detection of biological warfare agent aerosols," Johns Hopkins APL Technical Digest, Vol. 20, No. 3, 1999.

2. Ivnitski, D., I. Abdel-Hamid, P. Atanasov, and E. Wilkins, "Biosensors for detection of pathogenic bacteria," Biosensors & Bioelectronics, Vol. 14, 599-624, 1999.
doi:10.1016/S0956-5663(99)00039-1

3. Watts, H. J., C. R. Lowe, and D. V. Pollard-Knight, "Optical biosensor for monitoring microbial cells," Anal. Chem., Vol. 66, 2465-70, 1994.
doi:10.1021/ac00087a010

4. Schneider, B., J. Edwards, and N. Hartman, "Hartman interferometer: Versatile integrated optic sensor for label-free, real-time quanti¯cation of nucleic acids, proteins, and pathogens," Clin. Chem., Vol. 43, No. 9, 1757-1763, 1997.

5. Meyera, M., M. Fauverb, J. Rahna, T. Neumanna, F. Pattena, E. Seibelc, and A. Nelson, "Automated cell analysis in 2D and 3D: A comparative study," Pattern Recognition, Vol. 42, 141-146, 2009.
doi:10.1016/j.patcog.2008.06.018

6. Nandakumar, V., L. Kelbauskas, R. Johnson, and D. Meldrum, "Quantitative characterization of preneoplastic progression using single-cell computed tomography and three-dimensional karyometry," Cytometry A, Vol. 79, No. 1, 25-34, 2011.

7. Hajihashemi, M. R. and M. El-Shenawee, "Inverse scattering of three-dimensional PEC objects using the level-set method," Progress In Electromagnetics Research, Vol. 116, 23-47, 2011.

8. Hajihashemi, M. R. and M. El-Shenawee, "The level set shape reconstruction algorithm applied to 2D PEC targets hidden behind a wall," Progress In Electromagnetics Research B, Vol. 25, 131-154, 2010.
doi:10.2528/PIERB10072612

9. Hajihashemi, M. R. and M. El-Shenawee, "TE versus TM for the shape reconstruction of 2-D PEC targets using the level-set algorithm," IEEE Trans. Geosci. & Rem. Sens., Vol. 48, No. 3, 1159-68, 2010.
doi:10.1109/TGRS.2009.2029698

10. Hajihashemi, M. R. and M. El-Shenawee, "Level set algorithm for shape reconstruction of non-overlapping three dimensional penetrable targets," IEEE Trans. Geosci. & Rem. Sens., Vol. 50, No. 1, 75-86, Jan. 2012.
doi:10.1109/TGRS.2011.2160548

11. Salle, A. J., Fundamental Principles of Bacteriology, 2nd Edition, McGraw-Hill Book Co., 1943.

12. , , "Treatment of biological warfare agent casualties,", ARMY FM 8-284, NAVY NAVMED P-5042, AIR FORCE AFMAN (I) 44-156, MARINE CORPS MCRP 4-11.1C, 2000.

13. El-Shenawee, M., O. Dorn, and M. Moscoso, "Adjoint-field technique for shape reconstruction of 3-D penetrable object immersed in lossy medium," IEEE Trans. Antennas and Propag., Vol. 57, No. 2, 520-534, Feb. 2009.
doi:10.1109/TAP.2008.2011195

14. Querry, M., B. Curnuttea, and N. Williams, "Refractive index of water in the infrared," J. of the Optical Society of America, Vol. 59, No. 10, 1969.

15. Liebe, H., G. Hufford, and T. Manabe, "A model for the complex permittivity of water at frequencies below 1 THz," Int. Journal of Infrared and Millimeter Waves, Vol. 12, No. 7, 659-675, 1991.
doi:10.1007/BF01008897

16. Palmer, K. and D. Williams, "Optical properties of water in the near infrared," J. of the Optical Society of America, Vol. 64, No. 8, 1974.

17. Kotnik, T., D. Miklavcic, and , "Second-order model of membrane electric field induced by alternating external electric fields," IEEE Trans. on Biomed. Eng., Vol. 47, No. 8, 1074-1081, 2000.
doi:10.1109/10.855935

18. Dubois, P., C. Dedeban, and J. Zolesio, "3D inverse scattering by level set with zero capacity connecting set. Wave guide optimization by `zone'," Proceedings of the First European Conference on Antennas and Propagation, 1-6, 2006.
doi:10.1109/EUCAP.2006.4584914

19. Hajihashemi, M. R. and M. El-Shenawee, "High performance computing of the level-set reconstruction algorithm," Journal of Parallel and Distributed Computing, Vol. 70, 671-679, Jun. 2010.
doi:10.1016/j.jpdc.2009.10.001

20. Hassan, A. M., M. R. Hajihashemi, M. El-Shenawee, A. Al-Zoubi, and A. Kishk, "Drift de-noising of experimental TE measurements for imaging 2D PEC cylinder using the level set algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1218-1222, 2009.
doi:10.1109/LAWP.2009.2035341

21. Woten, D. A., M. R. Hajihashemi, A. M. Hassan, and M. El-Shenawee, "Experimental microwave validation of level-set reconstruction algorithm," IEEE Trans. Antennas and Propag., Vol. 58, No. 1, 230-233, Jan. 2010.
doi:10.1109/TAP.2009.2036186

22. Karpowicz, N., J. Chen, T. Tongue, and X.-C. Zhang, "Coherent millimeter wave to mid-infrared measurements with continuous bandwidth reaching 40 THz ," Electronics Letters, Vol. 44, 544-545, 2008.
doi:10.1049/el:20080356

23. Liu, J., J. Dai, X. Lu, I. Ho, and X.-C. Zhang, "Broadband terahertz wave generation, detection and coherent control using terahertz gas photonics," International Journal of High Speed Electronics and Systems, Vol. 20, No. 1, 3-12, 2011.
doi:10.1142/S0129156411006350

24. Bevilacqua, F., A. Berger, A. Cerussi, D. Jakubowski, and B. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Applied Optics, Vol. 39, No. 34, 6498-6507, Dec. 2000.
doi:10.1364/AO.39.006498