Vol. 42
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-07-02
Investigation of Cavity Reflex Antenna Using Circular Patch Type FSS Superstrate
By
Progress In Electromagnetics Research B, Vol. 42, 141-161, 2012
Abstract
Cavity reflex antenna (CRA) employing a circular patch type FSS (Frequency Selective Surface) superstrate is investigated. Analysis in terms of gain, bandwidth (impedance and gain) and radiation pattern has been presented. The aim of this work was to study low profile CRA having very thin superstrate sizes. In this CRA a circular patch antenna is used as a feeding source. The circular patch type FSS possesses some unique properties favorable for thin superstrate sizes. In practice when the excitation source of the CRA is a probe-fed microstrip antenna with finite ground plane, substrate and superstrate, cross-polarization increases. In the presented design, the cross polar level has been reduced by choosing the optimum air gap and superstrate geometrical and electrical properties. A CRA with circular patch type FSS offers better performance both in terms of gain and impedance bandwidth for, thin superstrates (0.008) while giving a gain of 13 dBi and considerably reduced crosspolar level. The proposed antenna exhibit nearly equal E-plane and H-plane radiation pattern. Measurement results are provided to support the simulated results (by Ansoft HFSS). The circular patch type FSS is easy to fabricate and can be embedded into the host profile.
Citation
Abhay Kotnala, Prateek Juyal, Ashok Mittal, and Asok De, "Investigation of Cavity Reflex Antenna Using Circular Patch Type FSS Superstrate," Progress In Electromagnetics Research B, Vol. 42, 141-161, 2012.
doi:10.2528/PIERB12042504
References

1. Jackson, D. and N. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Trans. on Antennas and Propag., Vol. 33, No. 9, 976-987, Sep. 1985.
doi:10.1109/TAP.1985.1143709

2. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. on Antennas and Propag., Vol. 32, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433

3. Vettikalladi, H., O. Lafond, and M. Himdi, "High-efficient and high gain superstrate antenna for 60-GHz indoor communication," IEEE Antenna Wireless Propag. Lett., Vol. 8, 1422-1425, 2009.
doi:10.1109/LAWP.2010.2040570

4. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Trans. on Antennas and Propag.,, Vol. 53, No. 1, 224-235, Jan. 2005.
doi:10.1109/TAP.2004.840521

5. Attia, H., L. Yousefi, M. M. Bait-Suwailam, M. S. Boybay, and O. M.Ramahi , "Enhanced-gain microstrip antenna using engineered magnetic superstrates," IEEE Antenna Wireless Propag. Lett. , Vol. 8, 1198-1201, 2009.
doi:10.1109/LAWP.2009.2035149

6. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.

7. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Trans. on Antennas and Propag., Vol. 58, No. 2, 258-270, Feb. 2010.
doi:10.1109/TAP.2009.2037702

8. Zhao, T., D. R. Jackson, J. T.Williams, H. Y. Yang, and A. A. Oliner, "2-D periodic leaky-wave antennas - Part I: Metal patch design," IEEE Trans. on Antennas and Propag., Vol. 53, 3505-3514, Nov. 2005.

9. Zhao, T., D. R. Jackson, and J. T. Williams, "2-D periodic leaky-wave antennas - Part II: Slot design," IEEE Trans. on Antennas and Propag., Vol. 53, 3515-3524, Nov. 2005.

10. Maci, S., M. Caiazzo, A. Cucini, and M. Casaletti, "A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab," IEEE Trans. on Antennas and Propag., Vol. 53, 70-81, Jan. 2005.
doi:10.1109/TAP.2004.840520

11. Foroozesh, A. and L. Shafai, "On the characteristics of highly directive resonant cavity antenna having metal strip grating superstrate," IEEE Trans. on Antennas and Propag., Vol. 60, No. 1, 78-91, Jan. 2012.
doi:10.1109/TAP.2011.2167933

12. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Effect of superstrate height on gain of MSA fed fabry perot cavity antenna," Loughborough Antenna and Propagation Conference, 2011.

13. Pirhadi, A., "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer," IEEE Trans. on Antennas and Propag., Vol. 60, No. 4, 2101-2106, 2012.
doi:10.1109/TAP.2012.2186230

14. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," IEE Proceedings, 2001.

15. Feresidis, A. P., S. Wang, and C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low profile high gain planar antennas," IEEE Trans. on Antennas and Propag., Vol. 53, No. 1, Jan. 2005.
doi:10.1109/TAP.2004.840528

16. Jackson, D. R., P. Burghignoli, G. Lovat, F. Capolino, J. Chen, D. R. Wilton, and A. A. Oliner, "The fundamental physics of directive beaming at microwave and optical frequency and the role of leaky waves," Proceedings of the IEEE, Vol. 99, No. 10, Oct. 2011.

17. Zhao, T., D. R. Jackson, and J. T. Williams, "General formulas for 2D leaky wave antennas," IEEE Trans. on Antennas and Propag., Vol. 53, No. 11, 3525-3533, Nov. 2005.
doi:10.1109/TAP.2005.856315

18. Balanis, C. A., "Antenna Theory: Analysis and Design," 3rd Edition, Wiley, New York, 2005.

19. Lovat, G., P. Burghignoli, and D. R. Jackson, "Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas," IEEE Trans. on Antennas and Propag., Vol. 54, No. 5, 1442-1452, May 2006.
doi:10.1109/TAP.2006.874350