Vol. 42
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-07-25
Microwave Contrast Imaging of Breast Tissue from Local Velocity Estimation
By
Progress In Electromagnetics Research B, Vol. 42, 381-403, 2012
Abstract
This paper proposes a new method to display microwave images of breast tissue, based on estimation of local microwave velocity from time of flight measurements. Its computational demands are low compared with tomography. It has two major components: 1) the estimation of the travel time of microwaves across the tissue between a set of antennae using a wavelet decomposition, and 2) the estimation of the microwave velocity field from the set of travel times using a low dimensional set of radial basis functions to model local velocity. The technique is evaluated in 2-D on clinical MR-based numerical breast phantoms incorporated in Finite-Difference Time-Domain simulations. The basis functions, used with a regularisation scheme to improve numerical stability, reduce the dimensionality of the inverse problem for computational efficiency and also to improve the robustness to error in velocity estimation. The results support previously published findings that the wavelet transform is suitable for robust measurement of time of flight even in clinically significant simulations, and shows that the velocity contrast images can be constructed so different regions of breast tissue type can be distinguished. In particular, the presence of a tumour is clearly detected, demonstrating the potential of this approach for breast screening. Keywords: Biomedical signal processing; Microwave imaging; Image reconstruction.
Citation
Jean-François Deprez, Mantalena Sarafianou, Maciek Klemm, Ian J. Craddock, and Penny J. Probert-Smith, "Microwave Contrast Imaging of Breast Tissue from Local Velocity Estimation," Progress In Electromagnetics Research B, Vol. 42, 381-403, 2012.
doi:10.2528/PIERB12050308
References

1. , , , International Agency for Research on Cancer, World Cancer Report, June 2008, http://www.iarc.fr/en/publications/pdfs-online/wcr/2008/wcr 2008.
doi:10.1056/NEJMcp021804

2. Fletcher, S. W. and J. G. Elmore, "Mammographic screening for breast cancer," New England Journal of Medicine, Vol. 37, 1672-1680, 2003.

3. Nelson, H. D., K. Tyne, A. Naik, C. Bougatsos, B. K. Chan, and L. Humphrey, "Screening for breast cancer: An update for the U.S. preventive services task force ," Annals of Internal Medicine, Vol. 151, No. 10, 716-726, 2009.
doi:10.1016/j.acra.2006.10.016

4. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, 207-218, 2007.

5. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Contrast-enhanced microwave imaging of breast tumours: A computational study using 3-D realistic numerical phantoms," Inverse Problems, Vol. 26, 1-22, 2010.

6. Klemm, M., I. J. Craddock, J. A. Leendertz, A. W. Preece, D. R. Gibbins, M. Shere, and R. Benjamin, "Clinical trials of UWB imaging radar for breast cancer detection," European Conference on Antennas and Propagation (EuCAP), 1-4, Barcelona, Spain, 2010.
doi:10.1088/0031-9155/41/11/002

7. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements on the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/52/20/002

8. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries ," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007.
doi:10.1109/TMI.2008.2008959

9. Winters, D. W., J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric property estimation using patient-specific basis functions," IEEE Trans. Med. Imaging, Vol. 28, 969-981, 2009.
doi:10.1109/TAP.2009.2037691

10. Fang, Q., P. M. Meaney, and K. D. Paulsen, "Viable three-dimensional microwave imaging: Theory and numerical experiments," IEEE Trans. Antennas and Propagation, Vol. 58, 449-458, 2010.
doi:10.1109/IEMBS.2011.6091418

11. Golnabi, A. H., P. M. Meaney, N. R. Epstein, and K. D. Paulsen, "Microwave imaging for breast cancer detection: Advances in three dimensional image reconstruction," Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 5730-5733, Prague, 2011.

12. Li, X., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "An overview of the ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, February 2005.
doi:10.1109/TBME.2008.921164

13. Kurrant, D. J., E. C. Fear, and D. T.Westwick, "Tumour response estimation in radar-based microwave breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 55, 2801-2811, 2008.
doi:10.1109/TAP.2009.2019856

14. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array - Experimental results," IEEE Trans. on Antennas and Propagation, Vol. 57, 1692-1704, 2009.

15. Pourvoyeur, K., A. Stelzer, G. Ossberger, T. Buchegger, and M. Pichler, "Wavelet-based impulse reconstruction in UWB-radar," IEEE Int. Symp. on Microwave Theory and Technology, 603-606, 2003.
doi:10.2528/PIER09100705

16. Lazaro, A., D. G. Firbau, and R. Villarino, "Wavelet based breast tumour localization technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009.

17. Deprez, J.-F., M. Klemm, P. P. Smith, and I. J. Craddock, "Twin target correction for ultra-wideband radar imaging of breast tumours," IEEE International Symposium in Biomedical Imaging, 213-216, 2010.
doi:10.1109/TBME.2002.800759

18. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, 812-822, 2002.
doi:10.1162/neco.1989.1.2.281

19. Moody, J. and C. J. Darken, "Fast learning in networks of locally tuned processing units," Neural Computation, Vol. 1, 281-294, 1989.

20. Jovanovic, I., L. Sbaiz, and M. Vitterli, "Acoustic tomography method for measuring temperature and wind velocity," IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Vol. 4, 1141-1144, 2006.

21. Wiens, T., "Sensing of turbulent flows using real-time acoustic tomography ," 19th Biennial Conf. of the New Zealand Acoustical Society, 2008.

22. Deprez, J.-F., M. Sarafianou, M. Klemm, I. J. Craddock, and P. P. Smith, "Breast imaging through microwave velocity reconstruction preliminary results," Asia Pacific Microwave Conf., 2011.

23. , , , University of Wisconsin Computational Electromagnetics Laboratory, UWCEM Numerical Breast Phantom Repository , http://uwcem.ece.wisc.edu.

24. Klemm, M., J. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Towards contrast enhanced breast imaging using ultra-wideband microwave radar system," IEEE Radio and Wireless Symposium, 516-519, New Orleans, USA, 2010.

25. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media ," IEEE Trans. on Antennas and Propagation, Vol. 14, 302-307, 1966.

26. , , , American College of Radiology, Breast Imaging Reporting and Database System (BI-RADS), http://www.acr.org/SecondaryMainMenuCategories/quality safety/.
doi:10.1109/TAP.2006.879196

27. Sarafianou, M., D. R. Gibbins, I. J. Craddock, M. Klemm, J. A. Leendertz, A. Preece, and R. Benjamin, "Breast surface reconstruction algorithm for a multi-static radar-based breast imaging system ," Europ. Conf. on Antennas and Propagation, 1-5, 2010.
doi:10.1109/TBME.2009.2038788

28. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, 2nd Edition, Wiley Interscience, NY, 2000.
doi:10.1109/TMTT.2004.832014

29. Yavuz, M. E. and F. L. Teixeira, "Full time-domain DORT for ultrawideband electromagnetic fields in dispersive, random inhomogeneous media," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 8, 2305-2315, 2006.

30. Chen, Y., I. J. Craddock, and P. Kosmas, "Feasibility study of lesion classification via contrast-agent-aided UWB breast imaging," IEEE Trans. on Biomedical Engineering, Vol. 57, No. 5, 1003-1007, 2010.

31. Fang, Q., P. M. Meaney, and K. D. Paulsen, "Microwave image reconstruction of tissue property dispersion characteristics utilizing multiple-frequency information," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1866-1875, August 2004.