Vol. 43
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-13
Characterization of Compact V-Band GaAs CMRC Filter Using Slow Wave CPW Transmission Lines Technology
By
Progress In Electromagnetics Research B, Vol. 43, 355-372, 2012
Abstract
This work presents a compact, high performance GaAs V-band bandpass filter (BPF) using a slow-wave coplanar waveguide transmission line (S-CPW TLine) and a CMRC (compact microstrip resonant cell). The slow-wave CPW Tlines have potential for the use in miniaturized low loss compact passive devices in the millimeter-wave frequency band. Owing to strong slow-wave effect, the longitudinal length of the S-CPW is shorter than that of a classical microstrip based on the same technology. The S-CPW TLines in the designed filter were realized with a reconfigurable defected ground structure (DGS). Adding the conventional inductively coupled resonator CMRC BPF allows the resonator to be miniaturized by the exploitation of the transversal dimensions of the CPW, while maintaining its performance as measured by insertion and return losses. However, the DGS cell allows reconfiguration of the structure from a low-band to a high-band BPF. The design of the filters with the DGS using filters that are designed for V-band applications is explained.
Citation
Po-Yu Ke, Hsien-Chin Chiu, Fan-Hsiu Huang, Hsuan-Ling Kao, and Quan Xue, "Characterization of Compact V-Band GaAs CMRC Filter Using Slow Wave CPW Transmission Lines Technology," Progress In Electromagnetics Research B, Vol. 43, 355-372, 2012.
doi:10.2528/PIERB12071302
References

1. Yang, F., K. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic bandgap (DC-PBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, 1509-1514, Aug. 1999.
doi:10.1109/22.780402

2. Mao, S.-G. and Y. Zhi, "Coplanar waveguide BPF with compact size and wide spurious free stopband using electromagnetic bandgap resonators," IEEE Microwave and Wireless Components Letters, Vol. 7, No. 3, 181-183, Mar. 2007.
doi:10.1109/LMWC.2006.890461

3. Lim, J., C. Kim, D. Ahn, Y. Jeong, and S. Nam, "Design of low-pass filters using defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 8, 2539-2545, Jan. 2005.
doi:10.1109/TMTT.2005.852765

4. EI-Shaarawy, H. B., F. Coccetti, R. Plana, M. EI-Said, and E. A. Hashish, "Compact bandpass ring resonator filter with enhanced wide-band rejection characteristics using defected ground structures," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 8, 500-503, Mar. 2007.
doi:10.1109/LMWC.2008.2000998

5. EI-Shaarawy, H. B., F. Coccetti, R. Plana, M. EI-Said, and E. A. Hashish, "A novel reconfigurable DGS cell for multi-stopband filter on CPW technology," IEEE Asia-Pacific Microw. Conf., 1-4, 2008.

6. Xue, Q., K. M. Shun, and C. H. Chan, "Novel 1-D microstrip PBG cells," IEEE Microw. Guide. Wave Lett., Vol. 10, No. 10, 403-405, 2000.
doi:10.1109/75.877226

7. Xue, Q., K. M. Shum, and C. H. Chan, "Novel 1D photonic bandgap microstrip transmission line," IEEE Antennas Propagation Society Int. Symp. Dig., Vol. 1, 16-21, 2000.

8. Shum, K. M., T. T. Mo, Q. Xue, and C. H. Chan, "A compact bandpass filter with two tuning transmission zeros using a CMRC resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 895-900, 2005.
doi:10.1109/TMTT.2004.842492

9. Mohd Salleh, M. K., G. Prigent, O. Pigaglio, and R. Crampagne, "Quarter wavelength side-coupled ring resonator for bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 156-162, 2008.
doi:10.1109/TMTT.2007.912167

10. Ke, P.-Y., H.-C. Chiu, J. S. Fu, and Q. Xue, "A V-band low insertion loss GaAs bandpass chip filter using CMRC technology," Asia-Pacific Microwave Conference Proceedings, 53-56, 2011.

11. Seok, S., N. Rolland, and P. A. Rolland, "Design, fabrication and characterization of BCB polymer embedded 60 GHz parallel-coupled BPF," Proc. - Electronic Components and Technology Conference, 501-505, Jun. 1-4, 2010.

12. Chiang, Y.-C. and C.-Y. Chen, "Design of a wideband lumped-element 3-dB quadrature coupler," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 3, 476-479, Mar. 2001.
doi:10.1109/22.910551

13. Yang, B., E. Skafidas, and R. J. Evans, "Design of 60 GHz millimetre-wave integrated SIR-MH microstrip bandpass filters on bulk CMOS," 38th European Microwave Conference, EuMC 2008, 841-844, Oct. 27-31, 2008.

14. Jun, D., H. Kim, and H. Yu, "60 GHz band planar dielectric waveguide filter with cross coupling," Infrared Millimeter Waves and 14th International Conference, 282, Sep. 18-22, 2006.

15. Yoshihisa, A., Y. Atsushi, S. Eiji, and S. Hiroya, "Low cost planar filter for 60 GHz applications," 30th European Microwave Conference, 1-4, Oct. 2000.

16. Chien, W. C., C.-M Lin, P. K. Singh, S. Basu, C. H. Hsiao, G. W. Huang, and Y. H. Wang, "MMIC compact filters with third harmonic suppression for V-band applications," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 6, 295-297, Nov. 2011.
doi:10.1109/LMWC.2011.2140365

17. Collin, R. E., Foundations for Microwave Engineering, Mc-Graw-Hill, New York, 1966.