Vol. 44
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-12
Perturbation Theory in the Design of Degenerate Rectangular Dielectric Resonators
By
Progress In Electromagnetics Research B, Vol. 44, 1-29, 2012
Abstract
The design of resonators with degenerate magnetic and electric modes usually requires the ability to perturb one or both types of modes in order to induce alignment of magnetic and electric properties. In this paper perturbation theory is used to identify different types of inclusions that can be used to realize fundamental-mode degeneracy in a rectangular dielectric resonator and thus, can ultimately be used in the design of negative-index metamaterials. For reasons associated with fabrication in the infrared-frequency regime, rectangular resonator designs are of particular interest.
Citation
Larry Kevin Warne, Lorena I. Basilio, William L. Langston, William A. Johnson, and Michael B. Sinclair, "Perturbation Theory in the Design of Degenerate Rectangular Dielectric Resonators," Progress In Electromagnetics Research B, Vol. 44, 1-29, 2012.
doi:10.2528/PIERB12071610
References

1. Tretyakov, S., "Analytical Modeling in Applied Electromagnetics," Artech House, 2003.

2. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging," J. Opt. Soc. Am. B, Vol. 23, No. 3, Mar. 2006.
doi:10.1364/JOSAB.23.000391

3. Lerat, J. M., N. Mallejac, and O. Acher, "Determination of the e®ective parameters of a metamaterial by field summation," Journal of Appl. Phys., Vol. 100, 084908, 2006.
doi:10.1063/1.2355427

4. Liu, R., R. J. Cui, D. Huang, B. Zhao, and D. R. Smith, "Description and explanation of electromagnetic behaviors in arti¯cial metamaterials based on e®ective medium theory," Physical Review E, Vol. 76, 026606, 2007.
doi:10.1103/PhysRevE.76.026606

5. Koschny, T., P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Physical Review B, Vol. 71, 245105, 2005.
doi:10.1103/PhysRevB.71.245105

6. Belov, P. A. and C. R. Simovski, "On homogenization of electromagnetic crystals formed by uniaxial resonant scatterers," Physical Review E, Vol. 72, 026615, 2005.
doi:10.1103/PhysRevE.72.026615

7. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory and Tech., Vol. 47, No. 11, Nov. 1999.

8. Tretyakov, S., S. Maslovski, and P. Belov, "An analytical model of metamaterials based on loaded wire dipoles," IEEE Trans. on Antennas and Propag., Vol. 51, 2562, 2003.

9. Tretyakov, S., "Meta-materials with wideband negative permittivity and permeability," Microwave and Optical Technology Letters, Vol. 31, No. 3, 163, 2001.
doi:10.1002/mop.1387

10. Basilio, L. I., L. K. Warne, W. L. Langston, W. A. Johnson, and M. B. Sinclair, "A quick and easy simulation procedure to aid in metamaterial unit-cell design," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1567-1570, 2011.
doi:10.1109/LAWP.2011.2171470

11. Simovski, C. R. and S. A. Tretyakov, "Model of isotropic resonant magnetism in the visible range based on core-shell clusters," Phys. Rev. B, Vol. 79, 045111, 2009.
doi:10.1103/PhysRevB.79.045111

12. Kim, J. and A. Gopinath, "Simulation of metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.
doi:10.1103/PhysRevB.76.115126

13. Popa, B. and S. Cummer, "Compact dielectric particles as a building block for low-loss magnetic materials," Phys. Rev. Lett., Vol. 100, 207401, 2008.
doi:10.1103/PhysRevLett.100.207401

14. Sinclair, , M., J. Ginn, J. Wendt, J. Stevens, D. Peters, L. Basilio, L. Warne, P. Clem, and J. Ihlefeld, "All dielectric infrared metamaterial," SPIE Optics + Photonics, Paper 8093-44, 2011.

15. Kuester, E., N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, "A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles," Progress In Electromagnetics Research B, Vol. 33, 175-202, 2011.
doi:10.2528/PIERB11042206

16. Basilio, L., L. Warne, W. Langston, W. Johnson, and M. Sinclair, "A negative-index metamaterial design based on metal-core, dielectric shell resonators," IEEE Antennas and Propagation Society International Symposium, Spokane, Washington, USA,2011 .

17. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, Art. 045104, 2008.

18. Jylha, L., I. Kolmakov, S. Maslovski, and S. Tretyakov, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, Art. 043102, 2006.

19. Palik, E., Handbook of Optical Constants and Solids, Academic,Orlando, Fla., 1986.

20. Warne, L. K., L. I. Basilio, W. L. Langston, W. A. Johnson, and M. B. Sinclair, "Perturbation theory in the design of degenerate spherical dielectric metamaterial resonators," Sandia National Laboratories Internal Report, 2011.

21. Basilio, L. I., L. K. Warne, W. L. Langston, W. A. Johnson, and M. B. Sinclair, "Microwave-frequency, negative-index metamaterial designs based on degenerate dielectric resonators," IEEE Antennas Wireless Propag. Lett., Vol. 11, 113-116, 2012.
doi:10.1109/LAWP.2012.2184252

22. Johnson, W., L. Basilio, J. Kotulski, R. Jorgenson, L. Warne, R. Coats, D. Wilton, N. Champagne, F. Capolino, J. Grant, and M. Khayat, "Eiger: An open-source frequency domain electromagnetics code," IEEE Antennas and Propagation Society International Symposium, Honolulu, Hawaii, USA, 2007.

23. Van Bladel, J., "On the resonances of a dielectric resonator of very high permittivity," IEEE Trans. on Microwave Theory and Tech., Vol. 23, No. 2, 199-208, Feb. 1975.
doi:10.1109/TMTT.1975.1128528

24. Van Bladel, J., "The excitation of dielectric resonators of very high permittivity," IEEE Trans. on Microwave Theory and Tech., Vol. 23, No. 2, 208-217, Feb. 1975.
doi:10.1109/TMTT.1975.1128529

25. Mongia, R. and A. Ittipiboon, "Theoretical and experimental investigations on rectangular dielectric resonator antennas," IEEE Trans. on Antennas and Propag., Vol. 45, No. 9, 1348, 1997.
doi:10.1109/8.623123

26. Harrington, R. F., Time-harmonic Electromagnetic Fields, 317-326, McGraw-Hill Book Company, New York, 1961.

27. Lin, X. Q., T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Applied Phys. Lett., Vol. 92, 131904, 2008.
doi:10.1063/1.2896308

28. Antar, Y. M. M. and D. Guha, "Composite and hybrid dielectric resonator antennas: Recent advances and challenges," 23rd National Radio Science Conference, Menoufiya University, Egypt, Mar. 14-16, 2006.

29. Poplavko, Y. M., Y. P. Prokopenko, V. I. Molchanov, and A. Dogan, "Frequency-tunable microwave dielectric resonator ," IEEE Trans. on Microwave Theory and Tech., Vol. 49, No. 6, 2001.
doi:10.1109/22.925485

30. Derneryd, A., U. M. Khan, A. A. Kishk, M. Milutinovic, and P. Persson, "Dual-polarized dielectric resonator antennas for base station applications," 5th European Conference on Antennas and Propagation, Rome, Italy, 2011.

31. Borginis, F. E. and and C. H. Papas, Electromagnetic Waveguides and Resonators, Hanbuch Der Physik, S. Flugge, Editor, Vol. XVI,411{414, Springer-Verlag, Berlin, 1958.