Vol. 46

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Novel Neural Network Model of Power Amplifier Plus Iq Imbalances

By Kai Fu, Choi Look Law, and Than Tun Thein
Progress In Electromagnetics Research B, Vol. 46, 177-192, 2013


Traditionally, the transmitter (TX) IQ imbalances distortion and power amplifier (PA) distortion are separately modeled. In this paper, the behavior of the two distortions are unified, and characterized by a single model. Rectangular structured Focused Time-Delay Neural Network (RSFTDNN) is proposed to uniformly model IQ imbalances and PA distortions. As a result, the physical distortions in the analog circuits are further abstracted. It also saves computation resources in simulation. Unlike the polynomial based model, which suffers from condition number effects and inaccuracy for deeply nonlinear system, the proposed RSFTDNN shows high accuracy. Two cases of real experiments are carried out, where RSFTDNN model shows much better performance than the polynomial based model in the sense of model accuracy.


Kai Fu, Choi Look Law, and Than Tun Thein, "Novel Neural Network Model of Power Amplifier Plus Iq Imbalances," Progress In Electromagnetics Research B, Vol. 46, 177-192, 2013.


    1. Emami, S., P. Hajireza, F. Abd-Rahman, H. Abdul-Rashid, H. Ahmad, and S. Harun, "Wide-band hybrid amplifier operating in S-band region," Progress In Electromagnetics Research, Vol. 102, 301-313, 2010.

    2. Raab, F., P. Asbeck, S. Cripps, P. Kenington, Z. Popovic, N. Pothecary, J. Sevic, and N. Sokal, "RF and microwave power amplifier and transmitter technologies --- Part 1," High Frequency Electronics, Vol. 2, No. 3, 22-36, 2003.

    3. Thein, T., C. Law, and K. Fu, "Frequency domain dynamic thermal analysis in GaAs Hbt for power amplifier applications," Progress In Electromagnetics Research, Vol. 118, 71-87, 2011.

    4. Liu, T., S. Boumaiza, and F. Ghannouchi, "Deembedding static nonlinearities and accurately identifying and modeling memory effects in wide-band RF transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3578-3587, 2005.

    5. Ku, H. and J. Kenney, "Behavioral modeling of nonlinear RF power amplifiers considering memory effects," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 12, 2495-2504, 2003.

    6. Wulich, D., "Definition of efficient PAPR in OFDM," IEEE Communications Letters, Vol. 9, No. 9, 832-834, 2005.

    7. Ding, L., Z. Ma, D. Morgan, M. Zierdt, and G. T. Zhou, "Compensation of frequency-dependent gain/phase imbalance in predistortion linearization systems," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 55, No. 1, 390-397, 2008.

    8. Narasimhan, B., D. Wang, S. Narayanan, H. Minn, and N. Al Dhahir, "Digital compensation of frequency-dependent joint Tx/Rx I/Q imbalance in OFDM systems under high mobility," IEEE Journal of Selected Topics in Signal Processing, Vol. 3, No. 3, 405-417, 2009.

    9. Anttila, L., P. Handel, and M. Valkam, "Joint mitigation of power amplifier and I/Q modulator impairments in broadband directconversion transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 4, 730-739, 2010.

    10. Rugh, W., Nonlinear System Theory, Johns Hopkins University Press, Baltimore, MD, 1981.

    11. Gharaibeh, K., O. Al-Zoubi, and A. Alzayed, "Adaptive predistortion using threshold decomposition-based piecewise linear modeling," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 21, No. 2, 145-156, 2011.

    12. Rawat, M., K. Rawat, and F. Ghannouchi, "Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 1, 95-104, 2010.

    13. Heath, M., Computing: An Introductory Survey, McGraw-Hill, 1998.

    14. Haykin, S., Adaptive Filter Theory, Prentice-Hall, 1996.

    15. Htike, K. and O. Khalifa, "Rainfall forecasting models using focused time-delay neural networks," 2010 IEEE International Conference on Computer and Communication Engineering (ICCCE), 1-6, 2010.

    16. Doyle, F., R. Pearson, and B. Ogunnaike, Identification and Control Using Volterra Models, Springer Verlag, 2002.

    17. Cao, H., A. Tehrani, C. Fager, T. Eriksson, and H. Zirath, "Dual-input nonlinear modeling for I/Q modulator distortion compensation," IEEE Radio and Wireless Symposium, RWS' 09, 39-42, 2009.

    18. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," Electronics Letters, Vol. 37, No. 23, 1417-1418, 2001.

    19. Bridewell, W., N. Asadi, P. Langley, and L. Todorovski, "Reducing overfitting in process model induction," Proceedings of the 22nd International Conference on Machine Learning, ACM,, 81-88, 2005.