Vol. 46

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-11-13

Hybrid Multi-Phased Particle Swarm Optimization for through -Wall Shape Reconstruction and Wall Parameters Estimation

By Ji-Liang Cai, Chuang-Ming Tong, and Wei-Jie Ji
Progress In Electromagnetics Research B, Vol. 46, 23-40, 2013
doi:10.2528/PIERB12091004

Abstract

When particle swarm optimization(PSO) technique is used for the inverse scattering problems, it will take unbearably long time for the final solution, especially when the PSO algorithm traps into the premature convergence. To overcome this problem, a hybrid multi-phased particle swarm optimization algorithm (HMPPSO) is proposed. By adopting the small swarm size strategy and the idea of ``sub swarms'' working cooperatively and alternatively with ``optimal swarm'' into the MPPSO, the HMPPSO can converge quickly with much less fitness function evaluation times, thus will reduce the reconstruction time. After the HMPPSO is validated by the numerical simulations on benchmark functions, the wall parameters (permittivity, conductivity, and thickness) together with target shape parameters (approximated by the trigonometric serials) with 20 dB additive Gaussian white noise are successfully reconstructed by HMPPSO using multi-frequency, multi-view/single-illumination scattering fields calculated by MOM.

Citation


Ji-Liang Cai, Chuang-Ming Tong, and Wei-Jie Ji, "Hybrid Multi-Phased Particle Swarm Optimization for through -Wall Shape Reconstruction and Wall Parameters Estimation," Progress In Electromagnetics Research B, Vol. 46, 23-40, 2013.
doi:10.2528/PIERB12091004
http://www.jpier.org/PIERB/pier.php?paper=12091004

References


    1. Qing, A. and L. Jen, "A novel method for microwave imaging of dielectric cylinder in layered media," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 10, 1337-1348, 1997.
    doi:10.1163/156939397X00026

    2. Huang, Q., L. L. Qu, B. H. Wu, and G. Y. Fang, "UWB through-wall imaging based on compressive sensing," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 3, 1408-1415, 2010.
    doi:10.1109/TGRS.2009.2030321

    3. Caorsi, S., A. Massa, and M. Pastrorino, "Iterative numerical computation of the electromagnetic fields inside weakly nonlinear infinite dielectric cylinders of arbitrary cross section using distorted-wave born approximation," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 3, 400-412, 1996.
    doi:10.1109/22.486149

    4. Abubakar, A. and P. M. van den Berg, "The contrast source inversion method for location and shape reconstructions," Inverse Problems, Vol. 18, 495-510, 2002.
    doi:10.1088/0266-5611/18/2/313

    5. Chen, X. D., "Subspace-based optimization method for solving inverse-scattering problems," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 3, 42-49, 2010.
    doi:10.1109/TGRS.2009.2025122

    6. Kirsch, A., "The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media," Inverse Problems, Vol. 18, 1025-1040, 2002.
    doi:10.1088/0266-5611/18/4/306

    7. Kidera, S., T. Sakamoto, and T. Sato, "High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3520-3529, Nov. 2009.
    doi:10.1109/TAP.2009.2032337

    8. Van den Berg, P. M. and M. van der Horst, "Nonlinear inversion in induction logging using the modified gradient method," Radio Sci., Vol. 30, 1355-1369, 1995.
    doi:10.1029/95RS01764

    9. Hettlich, F., "Two methods for solving an inverse conductive scattering problem," Inverse Problems, Vol. 10, 375-385, 1994.
    doi:10.1088/0266-5611/10/2/012

    10. Rekanos, I. T., "Shape reconstruction of a perfectly conducting scatter using di®erential evolution and particle swarm optimization," IEEE Trans. on Geosci. Remote Sens., Vol. 46, No. 7, 1967-1974, 2008.
    doi:10.1109/TGRS.2008.916635

    11. Qing, A., C. K. Lee, and L. Jen, "Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm," IEEE Trans. on Geosci. Remote Sens., Vol. 39, No. 3, 665-676, 2001.
    doi:10.1109/36.911123

    12. Dehmollaian, M., "Through-wall shape reconstruction and wall parameters estimation using differential evolution," IEEE Geosciences and Remote Sensing Letters, Vol. 8, No. 2, 201-205, 2011.
    doi:10.1109/LGRS.2010.2056912

    13. Brignone, M., G. Bozza, A. Randazzo, M. Piana, M. Pastorino, "A hybrid approach to 3D microwave imaging by using linear sampling and ACO," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3224-3232, 2008.
    doi:10.1109/TAP.2008.929504

    14. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Francisco, 2001.

    15. Huang, T. and A. Sanagavarapu, "A microparticle swarm optimizer for the reconstruction of microwave images," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 568-576, 2007.
    doi:10.1109/TAP.2007.891545

    16. Mhamdi, B., K. Grayaa, and T. Aguili, "Hybrid of particle swarm optimization, simulated annealing and tabu search for the reconstruction of two-dimensional targets from laboratory-controlled data," Progress In Electromagnetics Research B, Vol. 28, 1-18, 2011.

    17. Huang, C.-H., C.-C. Chiu, C.-L. Li, K.-C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.

    18. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimization for microwave imaging of two dimensional dielectric scatters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, 2005.
    doi:10.1109/TMTT.2005.847068

    19. Donelli, M., D. Franceschini, P. Rocca, and A. Massa, "Three dimensional microwave imaging problems solved through an e±cient multiscaling particle swarm optimization," IEEE Trans. on Geosci. Remote Sens., Vol. 47, No. 5, 1467-1481, 2009.
    doi:10.1109/TGRS.2008.2005529

    20. Emad Eldin, A. M., E. A. H. Hashish, and M. I. Hassan, "Inversion of lossy dielectric profiles using particle swarm optimization," Progress In Electromagnetics Research M, Vol. 9, 93-105, 2009.
    doi:10.2528/PIERM09072604

    21. Al-kazemi, B. S. N., "Multi-phase particle swarm optimization,", Syracuse University, May 2002.

    22. Al-Kazemi, B. and C. K. Mohan, "Muti-phase discrete particle swarm optimization," Proc. the Fourth International Workshop on Frontiers in Evolutionary Algorithms, 2000.

    23. Jie, J., J. C. Zeng, and C. Z. Han, "Knowledge based cooperative particle swarm optimization," Applied Mathematics and Computation, Vol. 205, No. 2, 861-873, 2008.
    doi:10.1016/j.amc.2008.05.100