Vol. 46
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-12-07
Radar Sensing Featuring Biconical Antenna and Enhanced Delay and Sum Algorithm for Early Stage Breast Cancer Detection
By
Progress In Electromagnetics Research B, Vol. 46, 299-316, 2013
Abstract
A biconical antenna has been developed for ultra-wideband sensing. A wide impedance bandwidth of around 115 % at bandwidth 3.73-14 GHz is achieved which shows that the proposed antenna exhibits a fairly sensitive sensor for microwave medical imaging applications. The sensor and instrumentation is used together with an improved version of delay and sum image reconstruction algorithm on both fatty and glandular breast phantoms. The relatively new imaging set-up provides robust reconstruction of complex permittivity profiles especially in glandular phantoms, producing results that are well matched to the geometries and composition of the tissues. Respectively, the signal-to-clutter and the signal-to-mean ratios of the improved method are consistently higher than 5 dB and 10 dB, corresponding to an average increase in image fidelity of more than 140% compared to conventional radar focusing technique.
Citation
Sew Sun Tiang, Mohammed Sadoon Hathal, Tareq Faisal Zanoon, Mohd Fadzil Ain, and Mohd Zaid Abdullah, "Radar Sensing Featuring Biconical Antenna and Enhanced Delay and Sum Algorithm for Early Stage Breast Cancer Detection," Progress In Electromagnetics Research B, Vol. 46, 299-316, 2013.
doi:10.2528/PIERB12102201
References

1. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, No. 4, 257-263, 1988.
doi:10.1109/10.1374

2. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, 547-550, 1994.
doi:10.1118/1.597312

3. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

4. Xiao, X. and T. Kikkawa, "Early breast cancer detection by ultrawide band imaging with dispersion consideration," Japanese Journal of Applied Physics, Vol. 47, 3209-3213, 2008.
doi:10.1143/JJAP.47.3209

5. Chen, X., J. Liang, S. Wang, Z. Wang, and C. Parini, "Small ultra wideband antennas for medical imaging," 2008 Loughborough Antennas & Propagation Conference, 28-31, Loughborough, UK, 2008.

6. Li, X., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217

7. Khor, W. C., M. E. Bialkowski, A. Abbosh, N. Seman, and S. Crozier, "An ultra wideband microwave imaging system for breast cancer detection," IEICE Transactions on Communications,, Vol. 90, No. 9, 2376-2381, 2007.
doi:10.1093/ietcom/e90-b.9.2376

8. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1692-1704, , 2009.
doi:10.1109/TAP.2009.2019856

9. Huang, W. and A. Kishk, "Compact dielectric resonator antenna for microwave breast cancer detection," IET Microwaves, Antennas & Propagation, Vol. 3, No. 4, 638-644, 2009.
doi:10.1049/iet-map.2008.0170

10. Golezani, J. J., M. Abbak, and I. Akduman, "Modified directional wide band printed monopole antenna for use in radar and microwave imaging applications," Progress In Electromagnetics Research Letters, Vol. 33, 119-129, 2012.

11. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection?," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.
doi:10.1109/MP.2003.1180933

12. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, No. 12, 1470-1479, 1998.
doi:10.1109/10.730440

13. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001

14. Zanoon, T. F., M. S. Hathal, and M. Z. Abdullah, "Comparing image reconstruction algorithms for microwave camera featuring ultra wideband sensor," IEEE International Conference on Imaging System and Techniques, 112-117, Penang, Malaysia, 2011.

15. Hollman, K., K. Rigby, and M. O'Donnell, "Coherence factor of speckle from a multi-row probe," 1999 IEEE Proceedings Ultrasonics Symposium, 1257-1260, Caesars, Tahoe, NV, 1999.

16. Nilavalan, R., A. Gbedemah, I. Craddock, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," Electronics Letters, Vol. 39, 1787-1789, 2003.
doi:10.1049/el:20031183

17. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716

18. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-20, 2009.
doi:10.2528/PIER09100204

19. Armitage, D. W., W. Yin, M. Z. Abdullah, M. Billal, and A. J. Peyton, "Antenna design for ultra wide band electromagnetic tomography," Proceedings of the 5th World Congress on Industrial Process Tomography, Norway, UK, 2007.

20. Zanoon, T. F., S. Binajjaj, and M. Abdullah, "Electromagnetic tomography featuring ultra wide band sensor with conformal finite difference (CFDTD) modeling of dispersive media," IEEE Symposium on Industrial Electronics & Applications, 377-382, Kuala Lumpur, Malaysia, 2009.

21. Samaddar, S. N. and E. L. Mokole, "Biconical antennas with unequal cone angles," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 2, 181-193, 1998.
doi:10.1109/8.660962

22. Valderas, D., J. I. Sancho, D. Puente, C. Ling, and X. Chen, Ultrawideband Antennas: Design and Applications, 174, 1st Edition, Imperial College Press, 2011.

23. Sill, J. and E. Fear, "Tissue sensing adaptive radar for breast cancer detection: Study of immersion liquids," Electronics Letters, Vol. 41, No. 3, 113-115, 2005.
doi:10.1049/el:20056953

24. Shao, W., B. Zhou, Z. Zheng, and G. Wang, "UWB microwave imaging for breast tumor detection in inhomogeneous tissue," 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1496-1499, Shanghai, China, 2006.

25. Wang, S. L., C. H. Chang, H. C. Yang, Y. H. Chou, and P. C. Li, "Performance evaluation of coherence-based adaptive imaging using clinical breast data," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 54, No. 8, 1669-1679, 2007.
doi:10.1109/TUFFC.2007.438

26. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Joines, "Numerical modeling for ultra wideband radar breast cancer detection and classification," Progress In Electromagnetics Research B, Vol. 34, 145-171, 2011.

27. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130

28. Porter, E., J. Fakhoury, R. Oprisor, M. Coates, and M. Popovic, "Improved tissue phantoms for experimental validation of microwave breast cancer detection," 2010 Proceedings of the Fourth European Conference on Antennas and Propagation, 1-5, Barcelona, Spain, 2010.

29. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Physics in Medicine and Biology, Vol. 50, 4245-4258, 2005.
doi:10.1088/0031-9155/50/18/001

30. Hahn, C. and S. Noghanian, "Heterogeneous breast phantom development for microwave imaging using regression models," International Journal of Biomedical Imaging, Vol. 2012, 1-12, 2012.
doi:10.1155/2012/803607

31. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S, "A large-scale study of ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

32. Winters, D. W., J. D. Shea, E. L. Madsen, G. R. Frank, B. D. Van Veen, and S. C. Hagness, "Estimating the breast surface using UWB microwave monostatic backscatter measurements," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 247-256, 2008.
doi:10.1109/TBME.2007.901028

33. Zanoon, T. and M. Abdullah, "Early stage breast cancer detection by means of time-domain ultra-wide band sensing," Measurement Science and Technology, Vol. 22, 114016, 2011.
doi:10.1088/0957-0233/22/11/114016

34. Cataldo, A., E. Piuzzi, G. Cannazza, E. De Benedetto, and L. Tarricone, "On the use of dielectric spectroscopy for quality control of vegetable oils," Proceedings of the XIX IMEKO World Congress Fundamental and Applied Metrology, 433-437, Lisbon, Portugal, 2009.