Vol. 48
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-30
Experimental Study of the Behavior of an EBG-Based Patch Antenna Subjected to Mechanical Deformations
By
Progress In Electromagnetics Research B, Vol. 48, 313-327, 2013
Abstract
This work deals with the behavior of a patch antenna equipped with squared electromagnetic bandgap (EBG) structures and subjected to various mechanical deformations (twisting and bending deformations). The EBG structures have a stop band frequency (rejection) feature, allowing the coupling and the undesired electromagnetic interferences to be reduced. The influences of the deformations on the mutual coupling and radiation patterns of an antenna equipped of those EBG elements are experimentally studied.
Citation
Xiaoke Han, Nicolas Adnet, Isabelle Bruant, Frederique Pablo, Habiba Hafdallah-Ouslimani, Laurent Proslier, and Alain C. Priou, "Experimental Study of the Behavior of an EBG-Based Patch Antenna Subjected to Mechanical Deformations," Progress In Electromagnetics Research B, Vol. 48, 313-327, 2013.
doi:10.2528/PIERB12112204
References

1. Yang, F. and Y. Rahmat-Samii, Electromagnetic Bandgap Structures in Antenna Engineering, The Cambridge RF and Microwave Engineering Series, 2009.

2. Sievenpiper, D., "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

3. Han, X., H. Hafdallah Ouslimani, and A. C. Priou, "Understanding the coupling reduction effect in microtrip array antennas using high impedance surface (HIS)," APS-S/URSI 2011, Spokane, Washington, Jul. 3-8, 2011.

4. Kawakami, Y. and T. Hori, "Mutual coupling reduction effects of EBG structure located on cylinder surface," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010.
doi:10.1109/APS.2010.5561160

5. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure," Microwave and Optical Technology Letters, Vol. 50, No. 8, 2167-2170, 2008.
doi:10.1002/mop.23598

6. Tran, C. M., H. Hafdallah-Ouslimani, L. Zhou, A. C. Priou, H. Teillet, J.-Y. Daden, and A. Ourir, "High impedance surfaces based antennas for high data rate communications at 40 GHz," Progress In Electromagnetic Research C, Vol. 13, , 217-229, 2011.

7. Han, X., H. Hafdallah-Ouslimani, T. Zhang, and A. C. Priou, "CSRRS for efficient reduction of the electromagnetic interferences and mutual coupling in microstrip circuits," Progress In Electromagnetics Research B, Vol. 42, 291-309, 2012.

8. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 41109-1-41109-3, 2006.
doi:10.1063/1.2166681

9. Hafdallah Ouslimani, H., X. Han, and T. Zhang, "Analysis and reduction of electromagnetic coupling interferences in microstrip antenna arrays," Advanced Electromagnetics Symposium AES 2012 Special Issue, META12, Paris, 2012.

10. Adnet, N., "Modelisation numerique du couplage mecanique/electromagnetique pour l'etude de la sensibilite du comportement electromagnetique d'antennes patch aux deformations mecaniques,", Ph.D. Thesis, University Paris, Ouest, 2012.

11., http://www.cst.com/content/products/mws/overview.aspx.