Vol. 49
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-03-01
GPR Estimation of the Geometrical Features of Buried Metallic Targets in Testing Conditions
By
Progress In Electromagnetics Research B, Vol. 49, 339-362, 2013
Abstract
The capability of Ground Penetrating Radar (GPR) systems of accurately reconstructing the geometrical features of buried objects, when working in critical conditions, is investigated. A customized microwave tomographic approach is used to tackle the imaging through the processing of comparative experimental and synthetic GPR data. The first ones have been gathered in laboratory controlled conditions, while the second ones have been obtained by exploiting an ad-hoc implementation of a CAD tool. Attention is paid to the significant case of `strong' scatterers having size comparable to the wavelengths of the probing signal, and possibly located close to the interface where the GPR antennas move. The results from imaging point out the potential of the proposed approach, showing in particular to which extent, in challenging operational settings, it is possible to recover also the information about the shape of metallic targets in addition to their correct location and size.
Citation
Francesco Soldovieri, Ilaria Catapano, Pier Matteo Barone, Sebastian E. Lauro, Elisabetta Mattei, Elena Pettinelli, Guido Valerio, Davide Comite, and Alessandro Galli, "GPR Estimation of the Geometrical Features of Buried Metallic Targets in Testing Conditions," Progress In Electromagnetics Research B, Vol. 49, 339-362, 2013.
doi:10.2528/PIERB12120508
References

1. Daniels, D. J. (ed.), Ground Penetrating Radar, 2nd Ed., The Institution of Electrical Engineers (IEE), London, UK, 2004.
doi:10.1049/PBRA015E

2. Jol, H. M. (ed.), Ground Penetrating Radar: Theory and Applications, Elsevier, Amsterdam, The Netherlands, 2009.

3. Cook, J., "Radar transparencies of mine and tunnel rocks," Geophysics, Vol. 40, No. 5, 865-885, Oct. 1975.
doi:10.1190/1.1440573

4. Conyers, L. B., Ground-penetrating Radar for Archaeology, AltaMira Press, Walnut Creek, CA, USA, 2004.

5. Pettinelli, E., A. Di Matteo, E. Mattei, L. Crocco, F. Soldovieri, J. D. Redman, and A. P. Annan, "GPR Response from buried pipes: Measurement on field site and tomographic reconstructions," IEEE Trans. on Geosci. Remote Sens., Vol. 47, No. 8, 2639-2645, Aug. 2009.
doi:10.1109/TGRS.2009.2018301

6. Picardi , G., J. J. Plaut, D. Biccari, O. Bombaci, D. Calabrese, M. Cartacci, A. Cicchetti, S. M. Clifford, P. Edenhofer, W. M. Farrell, C. Federico, A. Frigeri, D. A. Gurnett, T. Hagfors, E. Heggy, A. Herique, R. L. Hu®, A. B. Ivanov, W. T. K. Johnson, R. L. Jordan, D. L. Kirchner, W. Kofman, C. J. Leuschen, E. Nielsen, R. Orosei, E. Pettinelli, R. J. Phillips, D. Plettemeier, A. Safaeinili, R. Seu, E. R. Stofan, G. Vannaroni, T. R. Watters, and E. Zampolini, "Radar soundings of the subsurface of Mars," Science, Vol. 310, No. 5756, 1925-1928, Dec. 2005.
doi:10.1126/science.1122165

7. Vannaroni, G., et al. "MUSES: Multi-sensor soil electromagnetic sounding," Planetary Space Sci., Vol. 52, 67-78, 2004.
doi:10.1016/j.pss.2003.07.003

8. Pettinelli, E., P. Burghignoli, A. R. Pisani, F. Ticconi, A. Galli, G. Vannaroni, and F. Bella, "Electromagnetic propagation of GPR signals in Martian subsurface scenarios including material losses and scattering," IEEE Trans. on Geosci. Remote Sens., Vol. 45, 1271-1281, May 2007.
doi:10.1109/TGRS.2007.893563

9. Ciarletti, V., C. Corbel, D. Plettemeier, P. Cais, S. M. Clifford, and S.-E. Hamran, "WISDOM GPR designed for shallow and high-resolution sounding of the Martian subsurface," Proc. IEEE, Vol. 99, No. 5, 824-836, 2011.
doi:10.1109/JPROC.2010.2100790

10. Turk, A. S., A. K. Hocaoglu, A. A. Vertiy, and Eds., Subsurface Sensing, Wiley, Hoboken, NJ, USA, 2011.

11. Yamaguchi, Y., M. Mitsumoto, M. Sengoku, and T. Abe, "Synthetic aperture FM-CW radar applied to the detection of objects buried in snowpack," IEEE Trans. on Geosci. Remote Sens., Vol. 32, No. 1, 11-18, Jan. 1994.
doi:10.1109/36.285184

12. Chang, C. W., C. H. Lin, and H. S. Lien, "Measurement radius of reinforcing steel bar in concrete using digital image GPR," Construction Building Materials, Vol. 23, No. 2, 1057-1063, Feb. 2009.
doi:10.1016/j.conbuildmat.2008.05.018

13. Arcone, S., D. Finnegan, and G. Boitnott, "GPR characterization of a lacustrine UXO site," Geophysics, Vol. 75, No. 4, WA221-WA229, Jul. 2010.
doi:10.1190/1.3467782

14. Radzevicius, S., "Practical 3-D migration and visualization for accurate imaging of complex geometries with GPR," J. Environ. Engin. Geophysics, Vol. 13, No. 2, 99-112, Jun. 2008.
doi:10.2113/JEEG13.2.99

15. Shihab, S. and W. Al-Nuaimy, "Radius estimation for cylindrical objects detected by ground penetrating radar," Subsurface Sensing Technol. Applicat., Vol. 6, No. 2, 151-166, Apr. 2005.
doi:10.1007/s11220-005-0004-1

16. Gantala, G., C. V. Krishnamurthy, K. Balasubramaniam, and N. Ganesan, "Shape reconstruction of metal pipes with corrosion defects using single frequency limited view scattered data," NDT & E Internat., Vol. 52, 129-135, Nov. 2012.

17. Grandjean, G., J. C. Gourry, and A. Bitri, "Evaluation of GPR techniques for civil-engineering applications: Study on a test site," J. Applied Geophysics, Vol. 45, No. 3, 141-156, Oct. 2000.
doi:10.1016/S0926-9851(00)00021-5

18. Zeng, X. and G. A. McMechan, "GPR characterization of buried tanks and pipes," Geophysics, Vol. 62, No. 3, 797-806, Jun. 1997.
doi:10.1190/1.1444189

19. Duchene, B., A. Joisel, and M. Lambert, "Nonlinear inversions of immersed objects using laboratory-controlled data," Inverse Problems, Vol. 20, No. 6, S81-S98, 2004.
doi:10.1088/0266-5611/20/6/S06

20. Valerio, G., A. Galli, P. M. Barone, S. E. Lauro, E. Mattei, and E. Pettinelli, "GPR detectability of rocks in a Martian-like shallow subsoil: A numerical approach," Planetary Space Sci., Vol. 62, 31-40, 2012.
doi:10.1016/j.pss.2011.12.003

21. Ko, K. H., G. Jang, K. Park, and K. Kim, "GPR-based landmine detection and identification using multiple features," Int. J. Antennas Propag., Vol. 2012, Article ID 826404, 7, 2012.

22. Baum, C. E. and Ed., Detection and Identification of Visually Obscured Targets, Taylor and Francis, Philadelphia, PA, 1999.

23. Uduwawala, D., M. Norgren, P. Fuks, A. Gunawardena, and , "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002

24. Ozdemir, C., S. Demirci, and E. Yigit, "Practical algorithms to focus B-scan GPR images: Theory and application to real data," Progress In Electromagnetics Research B, Vol. 6, 109-122, 2008.
doi:10.2528/PIERB08031207

25. Song, L.-P., Q. H. Liu, F. Li, and Z. Q. Zhang, "Reconstruction of three-dimensional objects in layered media: Numerical experiments," IEEE Trans. on Antennas and Propag., Vol. 53, No. 4, 1556-1561, Apr. 2005.
doi:10.1109/TAP.2004.842585

26. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, nstitute of Physics Publishing, London, UK, 1998.
doi:10.1887/0750304359

27. Witten, A. J., J. E. Molyneux, and J. E. Nyquist, "Ground penetrating radar tomography: Algorithms and case studies," IEEE Trans. on Geosci. Remote Sens., Vol. 32, No. 2, 461-467, Mar. 1994.
doi:10.1109/36.295060

28. Capineri, L., P. Grande, and J. A. G. Temple, "Advanced image-processing technique for real-time interpretation of ground-penetrating radar images," Int. J. Imaging Systems Tech., Vol. 9, No. 1, 51-59, Dec. 1998.
doi:10.1002/(SICI)1098-1098(1998)9:1<51::AID-IMA7>3.0.CO;2-Q

29. Wu, Z. and C. Liu, "An image reconstruction method using GPR data," IEEE Trans. on Geosci. Remote Sens., Vol. 37, No. 1, 327-334, Jan. 1999.
doi:10.1109/36.739064

30. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Trans. on Geosci. Remote Sens., Vol. 38, No. 4, 1697-1708, Jul. 2000.
doi:10.1109/36.851968

31. Hansen, T. B. and P. M. Johansen, "Inversion scheme for ground penetrating radar that takes into account the planar air-soil interface," IEEE Trans. on Geosci. Remote Sens., Vol. 38, No. 1, 496-506, Jan. 2000.
doi:10.1109/36.823944

32. Kleinman, R. E. and P. M. van den Berg, "Two-dimensional location and shape reconstruction," Radio Sci., Vol. 29, No. 4, 1157-1169, 1994.
doi:10.1029/93RS03445

33. Dorn, O., E. L. Miller, and C. M. Rappaport, "A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets," Inverse Problems, Vol. 16, No. 5, 1119-1156, Oct. 2000.
doi:10.1088/0266-5611/16/5/303

34. Catapano, I., L. Crocco, and T. Isernia, "A simple two-dimensional inversion technique for imaging homogeneous targets in stratified media," Radio Sci., Vol. 39, No. 14, Feb. 2004.

35. Feijoo, G. R., "A new method in inverse scattering based on topological derivative," Inverse Problems, Vol. 20, No. 6, 1819-184, Dec. 2004.
doi:10.1088/0266-5611/20/6/008

36. Cakoni, F. and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin, Germany, 2006.

37. Monk, P., D. Colton, and K. Giebermann, "A regularized sampling method for solving three dimensional inverse scattering problems," SIAM J. Sci. Comput., Vol. 21, 2316-2330, 2000.
doi:10.1137/S1064827598340159

38. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. on Antennas and Propag., Vol. 55, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563

39. Catapano, I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
doi:10.2528/PIER11042704

40. Marklein, R., K. J. Langenberg, K. Mayer, J. Miao, A. Shlivinski, A. Zimmer, W. MÄuller, V. Schmitz, C. Kohl, and U. Mletzko, "Recent applications and advances of numerical modeling and wavefield inversion in nondestructive testing," Adv. Radio Sci., Vol. 3, 167-174, 2005.
doi:10.5194/ars-3-167-2005

41. Pierri, R., A. Liseno, and F. Soldovieri, "Shape reconstruction from PO multifrequency scattered fields via the singular value decomposition approach," IEEE Trans. on Antennas and Propag., Vol. 49, No. 9, 1333-1343, Sep. 2001.
doi:10.1109/8.947025

42. Pierri, R., A. Liseno, R. Solimene, and F. Soldovieri, "Beyond physical optics SVD shape reconstruction of metallic cylinders," IEEE Trans. on Antennas and Propag., Vol. 54, No. 2, 655-665, Feb. 2006.
doi:10.1109/TAP.2005.863121

43. Liseno, A., F. Soldovieri, and R. Pierri, "Improving a shape reconstruction algorithm with thresholds and multi-view data," Int. J. Electron. Commun., Vol. 58, No. 2, 118-124, Mar.-Apr. 2004.
doi:10.1078/1434-8411-54100216

44. Liseno, A., F. Tartaglione, and F. Soldovieri, "Shape reconstruction of 2-D buried objects under a Kirchhoff approximation," IEEE Geosci. Remote Sens. Letters, Vol. 1, No. 2, 118-121, Apr. 2004.
doi:10.1109/LGRS.2004.824748

45. Soldovieri, F., A. Brancaccio, G. Prisco, G. Leone, and R. Pierri, "A Kirchhoff-based shape reconstruction algorithm for the multimonostatic configuration: The realistic case of buried pipes," IEEE Trans. on Geosci. Remote Sens., Vol. 46, No. 10, 3031-3038, Oct. 2008.
doi:10.1109/TGRS.2008.921959

46. Solimene, R., A. Buonanno, F. Soldovieri, and R. Pierri, "Physical optics imaging of 3D PEC objects: Vector and multipolarized approaches," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 4, 1799-1808, Apr. 2010.
doi:10.1109/TGRS.2009.2035053

47. Robinson, D. A. and S. P. Friedman, "The effective permittivity of dense packing of glass beads, quartz sand and their mixtures immersed in different dielectric backgrounds," J. Non-Crystalline Solids, Vol. 305, No. 1-3, 261-267, Jul. 2002.
doi:10.1016/S0022-3093(02)01099-2

48. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resources Res., Vol. 16, 574-582, Mar. 1980.
doi:10.1029/WR016i003p00574

49. Pettinelli, E., A. Cereti, A. Galli, and F. Bella, "Time domain re°ectometry: Calibration techniques for accurate measurement of dielectric properties of various materials," Rev. Sci. Instrum., Vol. 73, 3553-3562, 2002.
doi:10.1063/1.1502015

50. Mattei, E., A. De Santis, A. Di Matteo, E. Pettinelli, and G. Vannaroni, "Time-domain reflectometry of glass beads/magnetite mixtures: A time and frequency domain study," Applied Physics Lett., Vol. 86, No. 22, 224102-3, May 2005.
doi:10.1063/1.1935029

51. PulseEkko Pro User Guide, Sensors and Software, Inc., Canada, 2006.

52. CST Microwave Studio Manual, CST, Germany, 2002.

53. Tikhonov, A. N. and V. Y. Arsenin, "Solution of Ill-Posed Problems," Winston and Wiley, Washington, DC, USA, 1977.

54. Golub, G. H. and C. F. van Loan, Matrix Computations, 3rd Ed., Johns Hopkins Univ. Press, Baltimore, MD, USA , 1996.