Vol. 50
Latest Volume
All Volumes
PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-12
TE and TM Modes of a Vane-Loaded Circular Cylindrical Waveguide for Gyro-TWT Applications
By
Progress In Electromagnetics Research B, Vol. 50, 295-313, 2013
Abstract
The dispersion equation governing the guided propagation of TE and TM fast wave modes of a circular cylindrical waveguide loaded by metal vanes positioned symmetrically around the wave-guide axis is derived from the exact solution of a homogeneous boundary value problem for Maxwell's equations. The dispersion equation takes the form of the solvability condition for an infinite system of linear homogeneous algebraic equations.The approximate dispersion equation corresponding to a truncation of the infinite-order coefficient matrix of the infinite system of equations to the coefficient matrix of a finite system of equations of sufficiently high order is solved numerically to obtain the cut-off wave numbers of the various propagating modes. Each cut-off wave number gives rise to a unique dispersion curve in the shape of a hyperbola in the ω-β plane.
Citation
Natarajan Kalyanasundaram Reema Budhiraja Satinder Singh Kriti Gupta , "TE and TM Modes of a Vane-Loaded Circular Cylindrical Waveguide for Gyro-TWT Applications," Progress In Electromagnetics Research B, Vol. 50, 295-313, 2013.
doi:10.2528/PIERB13011902
http://www.jpier.org/PIERB/pier.php?paper=13011902
References

1. Singh, G., S. M. S. Ravichandra, P. V. Bhaskar, P. K. Jain and B. N. Basu, "Analysis of an azimuthally periodic vane-loaded cylindrical waveguide for gyro-travelling wave tube," Int. J. Electronics, Vol. 86, No. 12, 1463-1479, 1999.
doi:10.1080/002072199132554

2. Singh, G., , S. M. S. Ravichandra, P. V. Bhaskar, P. K. Jain, and B. N. Basu, "Control of gain-frequency response of a vane-loaded gyro-TWT by beam and magnetic field parameters," Microwave and Optical Technology Letters,, Vol. 24, No. 2, 140-145, 2000.
doi:10.1002/(SICI)1098-2760(20000120)24:2<140::AID-MOP18>3.0.CO;2-O

3. Agrawal, M., , G. Singh, P. K. Jain, and B. N. Basu, "Two stage vane loading of gyro-TWT for high gains and bandwidths," Microwave and Optical Technology Letters, Vol. 27, No. 3, 210-213, 2000.
doi:10.1002/1098-2760(20001105)27:3<210::AID-MOP20>3.0.CO;2-0

4. Agrawal, , M., , G. Singh, P. K. Jain, and B. N. Basu, "Analysis of tapered vane loaded broad band gyro-TWT," IEEE Trans. on Plasma Sciences, Vol. 29, No. 3, 439-444, 2001.
doi:10.1109/27.928941

5. Singh, , G., M. V. Kartikeyan, A. K. Sinha, and B. N. Basu, "Effects of beam and magnetic field parameters on highly competing TE01 and TE21 modes of a vane loaded gyro-TWT," Int. J. Infrared and Millimeter Waves, Vol. 23, No. 4, 517-533, 2002.
doi:10.1023/A:1015727009153

6. Singh, , G., , S. M. S. Ravichandra, P. V. Bhaskar, P. K. Jain, and B. N. Basu, "Analysis of vane-loaded gyro-TWT for the gain-frequency response," IEEE Trans. on Plasma Science, Vol. 32, No. 5, 2130-2138, 2004.
doi:10.1109/TPS.2004.835528

7. Singh, , G. and B. N. Basu, "Improved approach for the gain frequency response of vane-loaded gyro-TWT," IEEE Trans. on Plasma Science, Vol. 33, No. 4, 1443-1446, 2005.
doi:10.1109/TPS.2005.854623

8. Singh, , G. and M. V. Kartikeyan, "Optimization of vane parameters for the gain frequency response of vane-loaded gyro-TWT," Int. J. Infrared and Millimeter Waves, Vol. 26, No. 2, 247-261, 2005.
doi:10.1007/s10762-005-3003-3

9. Singh, , G., M. V. Kartikeyan, and G. S. Park, "Gain and bandwidth analysis of vane-loaded gyro-TWT," Int. J. Infrared and Millimeter Waves, Vol. 27, No. 3, 333-341, 2006.
doi:10.1007/s10762-006-9055-1

10. Singh, , G., M. V. Kartikeyan, and B. N. Basu, "Gain frequency response of nearby waveguide mode in vane-loaded gyro-TWT," IEEE Trans. on Plasma Science, Vol. 34, No. 6, 554-558, 2006.
doi:10.1109/TPS.2006.875781

11. Singh, , G., B. N. Basu, and , "Modal analysis of azimuthally periodic vane loaded cylindrical waveguide for gyro-TWT," Progress In Electromagnetic Research, Vol. 70, 175-189, 2007.
doi:10.2528/PIER07010601

12. Singh, , G., "Analytical study of the interaction structure of vane-loaded gyro-travelling wave tube amplifier," Progress In Electromagnetic Research B, Vol. 4, 41-66, 2008.
doi:10.2528/PIERB08010402

13. Ioannidis, Z. C., K. A. Avramides, G. P. Latsas, and I. G. Tigelis, "Azimuthal mode coupling in coaxial waveguides and cavities with longitudinally corrugated insert," IEEE Trans. on Plasma Science, Vol. 39, No. 5, 1213-1221, 2011.
doi:10.1109/TPS.2011.2118766

14. Zaginaylov, , G. I. and S. S. Iaremenko, "Effcient method for analysis of coaxial gyrotron cavity with corrugated inner insert," Proc. of 41th EUMW, 183-186, 2011.

15. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, 1991.

16. Kalyansundaram, , N., "On the build-up of oscillations in a cylindrical magnetron," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 11, 1459-1490, 1992.
doi:10.1163/156939392X00012