Vol. 50
Latest Volume
All Volumes
PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-13
Pattern Synthesis of Concentric Circular Antenna Array by Nonlinear Least-Square Method
By
Progress In Electromagnetics Research B, Vol. 50, 331-346, 2013
Abstract
An improved nonlinear least-square method is presented in this paper. This method changes the traditional least-square method's shortness of being sensitive to its initial conditions. Pattern synthesis for concentric circular arrays using nonlinear least-square method is introduced. The excitation amplitudes and phases of the array elements are optimized. This method can make the design of the feeding network much easier because the excitation amplitudes of the elements placed on the same ring are equal. The number of parameters to be optimized is reduced which leads to a faster simulation speed and makes the simulation results much more accurate. Also, the cost of designing the feeding network is reduced. The simulation results show the good agreement between the synthesized and desired radiation pattern. Also, the peak side lobe level (PSLL) of the synthesized radiation pattern is quite low.
Citation
Hua Guo Chen-Jiang Guo Yan Qu Jun Ding , "Pattern Synthesis of Concentric Circular Antenna Array by Nonlinear Least-Square Method," Progress In Electromagnetics Research B, Vol. 50, 331-346, 2013.
doi:10.2528/PIERB13030304
http://www.jpier.org/PIERB/pier.php?paper=13030304
References

1. Yang, , K., , Z.-Q. Zhao, and Q.-H. Liu, "Fast pencil beam pattern synthesis of large unequally spaced antenna arrays," IEEE Trans. Antennas and Propag., Vol. 61, No. 2, 627-634, 2013.
doi:10.1109/TAP.2012.2220319

2. Li, , F., , Y.-H. Jiao, L.-S. Ren, Y.-Y. Chen, and L. Zhang, "Pattern synthesis of concentric ring array antennas by differential evolution algorithm,", Vol. 25, No. 2--3, 421-430, 2011.

3. Xu, , Z., , H. Li, Q.-Z. Liu, and J.-Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research , Vol. 79, 75-90, 2008.
doi:10.2528/PIER07091901

4. Mahanti, , G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using °oating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

5. Oliveri, , G. and A. Massa, "Genetic algorithm (GA)-enhanced almost di®erence set (ADS)-based approach for array thinning," IET Microwaves, Antennas & Propagation, Vol. 5, 305-315, 2011.
doi:10.1049/iet-map.2010.0114

6. Goudos, , S. K., , V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, "Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control," IEEE Antennas and Wireless Propagation Letters , Vol. 9, 125-129, 2010.
doi:10.1109/LAWP.2010.2044552

7. Zaharis, , Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated Boolean PSO," Progress In Electromagnatics Research, Vol. 117, 165-179, 2011.

8. Rocca, , P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas and Propagation Magazine , Vol. 53, 38-49, 2011.
doi:10.1109/MAP.2011.5773566

9. Mallipeddi, , R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
doi:10.2528/PIER11052205

10. Li, , R., L. Xu, X.-W. Shi, N. Zhang, and Z.-Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.

11. Donelli, , M., , S. Caorsi, F. De Natale, D. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, , Vol. 18, No. 11, 1533-1548, 2004.
doi:10.1163/1569393042954893

12. Massa, A., S. Caorsi, A. Lommi, M. Donelli, and F. De Natale, "Planar antenna array control with genetic algorithms and adaptive array theory," IEEE Trans. Antennas and Propag., Vol. 52, No. 11, 2919-2924, 2004.
doi:10.1109/TAP.2004.837523

13. Wang, , W.-B., Q. Feng, and D. Liu, "Synthesis of thinned linear and planar antenna arrays using binary PSO algorithm," Progress In Electromagnetics Research , Vol. 127, 371-387, 2012.
doi:10.2528/PIER12020301

14. Qu, , Y., , G. Liao, S.-Q. Zhu, and X.-Y. Liu, "Pattern synthesis of planar antenna array via convex optimization for airborne forward looking radar," Progress In Electromagnetics Research, Vol. 84, 1-10, 2008.
doi:10.2528/PIER08060301

15. Comisso, , M. and R. Vescovo, "Fast iterative method of power synthesis for antenna arrays," IEEE Trans. Antennas and Propag., Vol. 57, No. 7, 1952-1962, 2009.
doi:10.1109/TAP.2009.2021894

16. Liu, , Y., Z.-P. Nie, and Q. H. Liu, "A new method for the synthesis of non-uniform linear arrays with shaped power patterns," Progress In Electromagnetics Research, Vol. 107, 349-363, 2010.
doi:10.2528/PIER10060912

17. Keizer, , W. P. M. N., "Fast low-sidelobe synthesis for large planar array antennas utilizing successive fast Fourier transforms of array factor," IEEE Trans. Antennas and Propag., Vol. 55, No. 3, 715-722, 2007.
doi:10.1109/TAP.2007.891511

18. Bhattacharyya, , A. K., "Projection matrix method for shaped beam synthesis in phased arrays and reflectors," IEEE Trans. Antennas and Propag., Vol. 55, No. 3, 675-683, 2007.
doi:10.1109/TAP.2007.891570

19. Sanchez, , J., D. H. Covarrubias-Rosales, and M. A. Panduro, "A synthesis of unequally spaced antenna arrays using Legendre functions," Progress In Electromagnetics Research M, Vol. 7, 57-69, 2009.
doi:10.2528/PIERM09032305

20. Azevedo, , J. A. R., "Synthesis of planar arrays with elements in concentric rings," IEEE Trans. Antennas and Propag., Vol. 59, No. 3, 839-845, 2011.
doi:10.1109/TAP.2010.2102999

21. Pathak, N. N., G. K. Mahanti, S. K. Singh, J. K. Mishra, and A. Chakraborty, "Synthesis of thinned planar circular array antennas using modi¯ed particle swarm optimization," Progress In Electromagnatics Research Letters , Vol. 12, 87- 97, 2009.
doi:10.2528/PIERL09090606