Vol. 50
Latest Volume
All Volumes
PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-03-27
Electromagnetic Imaging of Dielectric Cylinders by Differential Evolution and Single Integral Equation
By
Progress In Electromagnetics Research B, Vol. 50, 19-36, 2013
Abstract
A technique is described for the electromagnetic reconstruction of the location, shape, dielectric constant, and conductivity of buried homogeneous cylinders of elliptic cross-section. The inversion procedure is based on the Differential Evolution algorithm and the forward problem is solved using the single boundary integral method. Simulation results are presented which demonstrate that this hybrid approach can offer a conceptually simple yet efficient and reasonably robust method for the imaging of buried objects and voids.
Citation
Krzysztof A. Michalski , "Electromagnetic Imaging of Dielectric Cylinders by Differential Evolution and Single Integral Equation," Progress In Electromagnetics Research B, Vol. 50, 19-36, 2013.
doi:10.2528/PIERB13030907
http://www.jpier.org/PIERB/pier.php?paper=13030907
References

1. Kleinman, , P. M. van den Berg and P. M. van den Berg, "Two-dimensional location and shape reconstruction," Radio Sci., Vol. 29, No. 4, 1157-1169, 1994.
doi:10.1029/93RS03445

2. Franchois, , A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with Levenberg-Marquardt method," IEEE Trans. on Antennas and Propagat.,, Vol. 45, 203-215, 1997.
doi:10.1109/8.560338

3. Bonnard, , S., P. Vincent, and M. Saillard, "Inverse obstacle scattering for homogeneous dielectric cylinders using a boundary finite-element method," IEEE Trans. on Antennas and Propagat., Vol. 48, 393-400, 2000.
doi:10.1109/8.841900

4. Haupt, , R. L. and S. E. Haupt, Practical Genetic Algorithms, Wiley, New York, 1998.

5. Rahmat-Samii, , Y. and E. Michielssen, "Electromagnetic Optimization by Genetic Algorithms," Wiley, 1999.

6. Chiu, , C. and P. Liu, "Electromagnetic transverse electric-wave inverse scattering of a conductor by a genetic algorithm," Int. J. Imag. Syst. Techn., Vol. 9, No. 5, 388-394, 1998.
doi:10.1002/(SICI)1098-1098(1998)9:5<388::AID-IMA9>3.0.CO;2-6

7. Qing, , A. and C. K. Lee, "Microwave imaging of a perfectly conducting cylinder using a real-coded genetic algorithm," IEE Proc. --- Microw. Antennas Propagat.,, Vol. 146, 421-425, 1999.
doi:10.1049/ip-map:19990674

8. Qing, , A., C. K. Lee, and L. Jen, "Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 8, 1121-1143, 1999.
doi:10.1163/156939399X01276

9. Meng, Z. Q., T. Takenaka, and T. Tanaka, "Image reconstruction of two-dimensional impenetrable objects using genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 1, 95-118, 1999.
doi:10.1163/156939399X01654

10. Caorsi, , S. and M. Pastorino, "Two-dimensional microwave imaging approach based on a genetic algorithm," IEEE Trans. on Antennas and Propagat., Vol. 48, 370-373, 2000.
doi:10.1109/8.841897

11. Price, , K. V., "An introduction to differential evolution," New Ideas in Optimization, 79-108, 1999.

12. Qing, , A., , "Differential Evolution, Fundamentals and Applications in Electrical Engineering," Wiley, 2009.

13. Storn, , R. and K. Price, "Differential evolution --- A simple and e±cient heuristic for global optimization over continuous spaces," J. Glob. Opt., Vol. 11, 341-359, 1997.
doi:10.1023/A:1008202821328

14. Tvrdk, , J. , I. K·rivy, and , "Simple evolutionary heuristics for global optimization," Comput. Stat. Data Anal., Vol. 30, 345-352, 1999.

15. Michalski, , K. A., "Electromagnetic imaging of circular-cylindrical conductors and tunnels using a di®erential evolution algorithm," Microwave & Opt. Technol. Lett., Vol. 26, 2000.

16. Michalski, K. A., "Electromagnetic imaging of ellipticalcylindrical conductors and tunnels using a differential evolution algorithm," Microwave & Opt. Technol. Lett., Vol. 27, 2001.

17. Harrington, , R. F., "Boundary integral formulations for homogeneous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016

18. Morita, , N., N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics, Artech House, Norwood, MA, 1990.

19. Peterson, , A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New York, 1998.

20. Marx, , E., "Integral equation for scattering by a dielectric," IEEE Trans. on Antennas and Propagat., Vol. 32, 166-172, 1984.
doi:10.1109/TAP.1984.1143285

21. Glisson, , A. W., "An integral equation for electromagnetic scattering from homogeneous dielectric bodies," IEEE Trans. on Antennas and Propagat. , Vol. 32, 173-175, 1984.
doi:10.1109/TAP.1984.1143279

22. Mautz, , J. R., "A stable integral equation for electromagnetic scattering from homogeneous dielectric bodies," IEEE Trans. on Antennas and Propagat., Vol. 37, 1070-1071, 1989.
doi:10.1109/8.34145

23. Swatek, D. R. and I. R. Ciric, "Single source integral equation for wave scattering by multiply-connected dielectric cylinders," IEEE Trans. on Magn., Vol. 32, 878-881, 1996.
doi:10.1109/20.497381

24. Pelosi, , G. and A boundary element approach to the, "A boundary element approach to the scattering from inhomogeneous dielectric bodies," IEEE Trans. on Antennas and Propagat., Vol. 46, 602-603, 1998.
doi:10.1109/8.664131

25. Yeung, M. S., "Single integral equation for electromagnetic scattering by three-dimensional homogeneous dielectric objects," IEEE Trans. on Antennas and Propagat., Vol. 47, 1615-1622, 1999.
doi:10.1109/8.805907

26. Newman, , G., "Crosswell electromagnetic inversion using integral and di®erential equations ," Geophys., Vol. 60, No. 3, 899-911, 1995.
doi:10.1190/1.1443825

27. Ellis, , G. A. and I. C. Peden, "Cross-borehole sensing: Identification and localization of underground tunnels in the presence of a horizontal stratification," IEEE Trans. on Geosci. Remote Sensing, Vol. 35, 756-761, 1997.
doi:10.1109/36.581997

28. Bonnard, S., P. Vincent, and M. Saillard, "Cross-borehole inverse scattering using a boundary finite-element method," Inverse Problems, Vol. 14, No. 3, 521-534, 1998.
doi:10.1088/0266-5611/14/3/009

29. Choi, , H. and J. Ra, "Detection and identification of a tunnel by iterative inversion from cross-borehole CW measurements," Microwave & Opt. Technol. Lett., Vol. 21, No. 6, 458-465, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<458::AID-MOP17>3.0.CO;2-9

30. Caorsi, , S., M. Pastorino, and M. Raffetto, "EM field prediction inside lossy multilayer elliptic cylinders for biological-body modeling and numerical-procedure testing," IEEE Trans. on Biomed. Eng., Vol. 46, 1304-1309, 1999.
doi:10.1109/10.797990

31. Harrington, R. F., Time-harmonic Electromagnetic Field, McGraw-Hill, New York, 1961.

32. Arvas, , E. and J. R. Mautz, "On the non-uniqueness of the surface EFIE applied to multiple conducting and/or dielectric bodies," Arch. Elek. Ä Ubertragung. , Vol. 42, No. 6, 364-369, 1988.

33. Price, , K. and R. Storn, "Differential evolution," Dr. Dobb's J.,, 18-24, 1997.

34. Masters, , T. and W. Land, "A new training algorithm for the general regression neural network," 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, 1990-1994, 1997.
doi:10.1109/ICSMC.1997.635142

35. Chiou, , J. and F.Wang, "Hybrid method of evolutionary algorithm for static and dynamic optimization problems with application to a fed-batch fermentation process," Comp. Chem. Engng., Vol. 23, 1277-1291, 1999.
doi:10.1016/S0098-1354(99)00290-2

36. Arvas, , E., S. M. Rao, and T. K. Sarkar, "E-field solution of TM-scattering from multiple perfectly conducting and lossy dielectric cylinders of arbitrary cross-section," IEE Proceedings, Part H --- Microwaves, Antennas and Propagation, Vol. 133, 115-121, 1986.
doi:10.1049/ip-h-2.1986.0019

37. Arvas, , E., Y. Qian, A. Sadigh, T. K. Sarkar, and F. Aslan, "E-field and H-¯eld solutions of TE scattering from multiple conducting and dielectric cylinders of arbitrary cross-section," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 6, 513-530, 1989.

39. Crow, , J. A., "Quadrature of integrands with a logarithmic singularity," Math. Comp., Vol. 60, 297-301, 1993.
doi:10.1090/S0025-5718-1993-1155572-3

39. Chang, C. S. and D. Du, "Further improvement of optimisation method for mass transit signalling block-layout design using diffrential evolution," IEE Proc. --- Electr. Power Appl., Vol. 146, 559-569, 1999.
doi:10.1049/ip-epa:19990223