Vol. 51
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-05-15
A Pareto Elite Selection Genetic Algorithm for Random Antenna Array Beamforming with Low Sidelobe Level
By
Progress In Electromagnetics Research B, Vol. 51, 407-425, 2013
Abstract
Random antenna array (RAA) that uses the conventional beamforming method produces a poor beam pattern with high sidelobe level. This greatly reduces the performance and the efficiency of the antenna. The use of Genetic Algorithm (GA) to find the best positions for the antenna elements in RAA to lower the sidelobes has been widely researched. However, there has been no solution proposed for the reduction of sidelobes when the user has no autonomy over the position of the radiating elements, for instance in cases such as emergency communications. This paper proposes a novel Pareto Elite Selection Genetic Algorithm (PESGA) optimization method to reduce the sidelobes in an RAA that has fixed elements' position. The proposed method uses a single fitness function (peak sidelobe level) for parent selection while an additional function (number of sidelobes above a threshold level) is introduced to select the elitist in every generation via Pareto Front (PF) selection. Results indicate that the proposed PESGA method is best used for scenarios where the array size is small. In such cases, the proposed method provides much reduced sidelobe compared to the conventional RAA beamforming method and up to 200% improvements in terms of mainlobe to peak sidelobe ratio compared to GA weight optimized beamforming method.
Citation
Suhanya Jayaprakasam, Sharul Kamal Bin Abd Rahim, and Chee Yen Leow, "A Pareto Elite Selection Genetic Algorithm for Random Antenna Array Beamforming with Low Sidelobe Level," Progress In Electromagnetics Research B, Vol. 51, 407-425, 2013.
doi:10.2528/PIERB13032008
References

1. John, L. and K. L. Titus, Digital Beamforming in Wireless Communications, Artech House, Inc., 1996.

2. Dahrouj, H. and Y. Wei, "Coordinated beamforming for the multicell multi-antenna wireless system," IEEE Transactions on Wireless Communications, Vol. 9, 1748-1759, 2010.
doi:10.1109/TWC.2010.05.090936

3. Muhammad, N., et al. "Beam forming networks using reduced size butler matrix," Wireless Personal Communications, 1-20, 2010.

4. Li, Q., et al. "MIMO techniques in WiMAX and LTE: A feature overview," IEEE Communications Magazine, Vol. 48, 86-92, 2010.
doi:10.1109/MCOM.2010.5458368

5. Shilo, S., A. J. Weiss, and A. Averbuch, "Performance of optimal beamforming with partial channel knowledge," IEEE Transactions on Wireless Communications, Vol. 10, 4035-4040, 2011.
doi:10.1109/TWC.2011.101211.110124

6. Huang, Y., "WiMAX dynamnic beamforming antenna," IEEE Aerospace and Electronic Systems Magazine, Vol. 23, 26-31, 2008.
doi:10.1109/MAES.2008.4607896

7. Constantine, A. B., Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.

8. Huang, J. Y., P. Wang, and Q. Wan, "Collaborative beamforming for wireless sensor networks with arbitrary distributed sensors," IEEE Communications Letters, Vol. 16, 1118-1120, 2012.
doi:10.1109/LCOMM.2012.050912.120370

9. D'Urso, M., M. G. Labate, A. Buonanno, and P. Vinetti, "Effective beam forming networks for large arbitrary array of antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, 5129-5135, 2012.
doi:10.1109/TAP.2012.2208091

10. Gerstoft, P. and W. S. Hodgkiss, "Improving beampatterns of two-dimensional random arrays using convex optimization," Journal of the Acoustical Society of America, Vol. 129, EL135-EL140, 2011.
doi:10.1121/1.3556896

11. Young, W. F., E. F. Kuester, and C. L. Holloway, "Measurements of randomly placed wireless transmitters used as an array for receivers located within the array volume with application to emergency responders," IEEE Transactions on Antennas and Propagation, Vol. 57, 241-247, 2009.
doi:10.1109/TAP.2008.2009651

12. Fuchs, B. and J. J. Fuchs, "Optimal narrow beam low sidelobe synthesis for arbitrary arrays," IEEE Transactions on Antennas and Propagation, Vol. 58, 2130-2135, 2010.
doi:10.1109/TAP.2010.2046863

13. Krishnamurthy, S., D. W. Bliss, and V. Tarokh, "Sidelobe level distribution computation for antenna arrays with arbitrary element distributions," 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2045-2050, 2011.

14. Li, W. T., X. W. Shi, L. Xu, and Y. Q. Hei, "Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, Vol. 80, 461-476, 2008.
doi:10.2528/PIER07121503

15. Li, R., L. Xu, X. W. Shi, N. Zhang, and Z. Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.

16. Lu, B., S. X. Gong, S. A. Zhang, Y. Guan, and J. Ling, "Optimum spatial arrangement of array elements for suppression of grating-lobes of radar cross section," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 114-117, 2010.
doi:10.1109/LAWP.2010.2087003

17. Steinberg, B., "The peak sidelobe of the phased array having randomly located elements," IEEE Transactions on Antennas and Propagation, Vol. 20, 129-136, 1972.
doi:10.1109/TAP.1972.1140162

18. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low side lobe level using neural networks trained by mutated boolean PSO," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
doi:10.2528/PIER12022806

19. Zaharis, Z. D., C. Skeberis, and T. D. Xenos, "Improved antenna array adaptive beamforming with low side lobe level using a novel adaptive invasive weed optimization method ," Progress In Electromagnetics Research, Vol. 124, 137-150, 2012.
doi:10.2528/PIER11120202

20. Son, S. H. and U. H. Park, "Sidelobe reduction of low-profile array antenna using a genetic algorithm," ETRI Journal, Vol. 29, 95-98, 2007.
doi:10.4218/etrij.07.0206.0128

21. Lin, Z. Q., M. L. Yao, and X. W. Shen, "Sidelobe reduction of the low profile multi-subarray antenna by genetic algorithm," AEU --- International Journal of Electronics and Communications, Vol. 66, 133-139, 2012.
doi:10.1016/j.aeue.2011.06.006

22. Rocca, P., R. L. Haupt, and A. Massa, "Sidelobe reduction through element phase control in uniform subarrayed array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 437-440, 2009.
doi:10.1109/LAWP.2009.2015899

23. Li, X., W.-T. Li, X.-W. Shi, J. Yang, and J.-F. Yu, "Modified differential evolution algorithm for pattern synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 137, 371-388, 2013.

24. Bevelacqua, P. J. and C. A. Balanis, "Optimizing antenna array geometry for interference suppression," IEEE Transactions on Antennas and Propagation, Vol. 55, 637-641, 2007.
doi:10.1109/TAP.2007.891509

25. Ahmed, M. F. A. and S. A. Vorobyov, "Sidelobe control in collaborative beamforming via node selection," IEEE Transactions on Signal Processing, Vol. 58, 6168-6180, 2010.
doi:10.1109/TSP.2010.2077631

26. Liu, D., Q. Feng, and W.-B. Wang, "Discrete optimization problems of linear array synthesis by using real number particle swarm optimization," Progress In Electromagnetics Research, Vol. 133, 407-424, 2013.

27. Li, R., L. Xu, X.-W. Shi, N. Zhang, and Z.-Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.

28. Mandal, A., H. Zafar, S. Das, and A. V. Vasilakos, "Efficient circular array synthesis with a memetic differential evolution algorithm," Progress In Electromagnetics Research B, Vol. 38, 367-385, 2012.

29. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
doi:10.2528/PIER11052205

30. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "Near optimal robust adaptive beamforming approach based on evolutionary algorithm," Progress In Electromagnetics Research B, Vol. 29, 157-174, 2011.
doi:10.2528/PIERB10110810

31. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "Robust adaptive beamforming based on covariance matrix reconstruction for look direction mismatch ," Progress In Electromagnetics Research Letters, Vol. 25, 37-46, 2011.

32. Zitzler, E. and L. Thiele, "Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach," IEEE Trans. Evol. Comput., 257-271, 1999.
doi:10.1109/4235.797969

33. Haupt, R. L. and S. E. Haupt, Practical Genetic Algorithms, 2nd Ed., John Wiley & Sons Inc., Hoboken, New Jersey, 2004.

34. Goudos, S. K., K. Siakavara, E. Vafiadis, and J. N. Sahalos, "Pareto optimal Yagi-Uda antenna design using multi-objective differential evolution," Progress In Electromagnetics Research, Vol. 105, 231-251, 2010.
doi:10.2528/PIER10052302

35. Ochiai, H., P. Mitran, H. V. Poor, and V. Tarokh, "Collaborative beamforming for distributed wireless ad HOC sensor networks," IEEE Transactions on Signal Processing, Vol. 53, 4110-4124, 2005.
doi:10.1109/TSP.2005.857028

36. Dikmese, S., A. Kavak, K. Kucuk, S. Sahin, and A. Tangel, "FPGA based implementation and comparison of beamformers for CDMA2000," Wirel. Pers. Commun., Vol. 57, 233-253, 2011.
doi:10.1007/s11277-009-9855-4

37. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.