Vol. 51
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-27
Segmented-Core Single Mode Optical Fiber with Ultra-Large-Effective-Area, Low Dispersion Slope and Flattened Dispersion for DWDM Optical Communication Systems
By
Progress In Electromagnetics Research B, Vol. 51, 157-175, 2013
Abstract
In this paper we present designs of fibersμ having non-zero positive, non-zero negative and near-zero ultra-flattened dispersion with small dispersion slope and ultra-large effective area over a wide spectral range. The designs consist of a concentric multilayer segmented core followed by a trench assisted cladding and a thin secondary core. The central segmented core helps in maintaining desired dispersion over a wide range of wavelength. The second core of the fiber helps in achieving ultra-large effective area and trench assisted cladding reduces the bending loss. The designs of the fiber have been analyzed by using the transfer matrix method. For positive non-zero dispersion flattened fiber we have optimized dispersion near +4.5 ps/km/nm in the wavelength range 1.46-1.65 μm. Maximum value of dispersion slope of the fiber in above mentioned wavelength range is 0.026 ps/km/nm2. In the design of negative non-zero dispersion flattened fiber, dispersion has been achieved near -6 ps/km/nm in the spectral range of 1.33-1.56 μm and maximum value of dispersion slope is 0.048 ps/km/nm2. Dispersion and dispersion slope of near zero dispersion flattened fiber lie in the range [0.0039-0.520] ps/km/nm and [(0.0004)-(0.0365)] ps/km/nm2 respectively in the spectral range of 1.460-1.625 μm. The near zero dispersion flattened fiber has an ultra-high effective area ranging from 114 μm2 to 325.95 μm2 in the aforementioned wavelength range, which covers the entire S+C+L-band. These values of mode area are noticeably higher than those reported in literature for flattened dispersion fibers with large mode area. Designed fiber show very small bending loss. We report breakthrough in the mode area of the single mode optical fiber with ultra flattened dispersion and low dispersion slope.
Citation
Babita Hooda, and Vipul Rastogi, "Segmented-Core Single Mode Optical Fiber with Ultra-Large-Effective-Area, Low Dispersion Slope and Flattened Dispersion for DWDM Optical Communication Systems," Progress In Electromagnetics Research B, Vol. 51, 157-175, 2013.
doi:10.2528/PIERB13032206
References

1. Sakamoto, J., J. Kani, M. Jinno, S. Aisawa, M. Fukui, M. Yamada, and K. Oguchi, "Wide wavelength band (1535-1560nm and 1574-1600 nm), 28 × 10 Gbit/s WDM transmission over 320km dispersion shifted fiber," Electronics Letters, Vol. 34, 392-394, 1998.
doi:10.1049/el:19980210

2. Yashida, S., S. Kuwano, and K. Iwashita, "10 Gbit/s ×10 channel WDM transmission experiment over 1200km with repeater spacing of 100km without gain equalization or pre-emphasis, in: Optical fiber communication ," Proceeding of Optical Fiber Communication Conference, 19-21, 1996.

3. Thyagarajan, K., R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photonics Technology Letters, Vol. 8, 1510-1512, 1996.
doi:10.1109/68.541566

4. Birks, T. A., D. Mogilevtsev, J. C. Knight, and P. S. J. Russell, "Dispersion compensation using single-material fibers," IEEE Photonics Technology Letters, Vol. 11, 674-676, 1999.
doi:10.1109/68.766781

5. Yi, N., L. Zhang, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photonics Technology Letters, Vol. 16, 1516-1518, 2004.
doi:10.1109/LPT.2004.823697

6. Dasgupta, S., B. P. Pal, and M. R. Shenoy, "Design of dispersion-compensating Bragg fiber with an ultrahigh figure of merit," Optics Letters, Vol. 30, 1917-1919, 2005.
doi:10.1364/OL.30.001917

7. Auguste, J., R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "-1800 ps/(nm.km) chromatic dispersion at 1.55 μm in dual concentric core fibre," Electronics Letters, Vol. 36, 1689-1691, 2000.
doi:10.1049/el:20001236

8. Rastogi, V., A. Nandam, and A. Kumar, "Design and analysis of large-core high-GVD planar optical waveguide for dispersion compensation," Applied Physics B, Vol. 105, 821-824, 2011.
doi:10.1007/s00340-011-4646-5

9. Rastogi, V., R. Kumar, and A. Kumar, "Large effective area all-solid dispersion compensating fiber," Journal of Optics, Vol. 13, 125707, 2011.
doi:10.1088/2040-8978/13/12/125707

10. Peer, A., G. Prabhakar, V. Rastogi, and A. Kumar, "A microstructured dual-core dispersion compensating fiber design for large-mode-area and high-negative dispersion," International Conference on Fibre Optics and Photonics, WPo.24 2012.

11. Kumano, N., K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.020 ps/km/nm2," Proceeding of ECOC' 01, 1-5, 2001.

12. Zhu, B., L. E. Nelson, L. Leng, S. Stulz, S. Knudsen, and D. Peckham, "1.6 Tbits/s (40 × 427 Gbit/s) WDM transmission over 2400km of fiber with 100km dispersion managed spans," Electronics Letters, Vol. 38, 647-648, 2002.
doi:10.1049/el:20020453

13. Varshney, R. K., A. K. Ghatak, I. C. Goyal, and C. S. Antony, "Design of flat field fiber with very small dispersion slope," Optical Fiber Technology, Vol. 9, 189-198, 2003.
doi:10.1016/S1068-5200(03)00042-7

14. Lundin, R., "Dispersion flattening in W fiber," Applied Optics, Vol. 33, 1011-1014, 1994.
doi:10.1364/AO.33.001011

15. Chraplyvy, A. R., "Limitation on lightwave communications imposed by optical fiber nonlinearities," Journal of Lightwave Technology, Vol. 8, 1548-1557, 1990.
doi:10.1109/50.59195

16. Naka, A. and S. Saito, "In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion," Journal of Lightwave Technology, Vol. 12, 280-287, 1994.
doi:10.1109/50.350593

17. Okuno, T., S. K. Hatayama, T. Sasaki, M. Onishi, and M. Shigematsu, "Negative dispersion-flattened fiber suitable for 10 Gbits/s directly-modulated signal transmission in whole telecommunication band," Electronics Letters, Vol. 40, 1306-1308, 2004.
doi:10.1049/el:20040521

18. Liu, Y., A. J. Antos, V. A. Bhagavatula, and M. A. Newhouse, "Single mode dispersion shifted fiber with effective area larger than 80 μm2 and good bending performance," Proceeding of ECOC' 95, TuL2.4, 1995.

19. Tian, X. and X. Zhang, "Dispersion-flattened designs of the large effective area single-mode fibers with ring index profiles," Optics Communications, Vol. 230, 105-113, 2004.
doi:10.1016/j.optcom.2003.11.037

20. Rostami, A. and S. Makouei, "Modified W-type single mode optical fiber design with ultra-low, flattened chromatic dispersion and ultra-high effective area for high bit rate long haul communications," Progress In Electromagnetics Research C, Vol. 12, 79-92, 2010.
doi:10.2528/PIERC09090603

21. Hatayama, H., T. Kato, M. Onishi, E. Sasaoka, and M. Nishimura, "Dispersion flattened fiber with large-effective-core area more than 50 μm2," Proceedings of Optical Fiber Communication Conference, Vol. 2, ThK4, 1998.

22. Hooda, B. and V. Rastogi, "Ultra-large-effective-area dispersion-flattened segmented-core optical fiber," Proc. SPIE 8760, International Conference on Communication and Electronics System Design, Vol. 8760, 876015 2013.

23. Thyagarajan, K., S. Diggavi, A. Taneja, and A. K. Ghatak, "Simple numerical technique for the analysis of cylindrically symmetric refractive-index profile optical fibers," Applied Optics, Vol. 30, 3877-3879, 1991.
doi:10.1364/AO.30.003877

24. Agrawal, G. P., Nonlinear Fiber Optics, Academic Press, San Diego, 2001.

25. Pask, C., "Physical interpretation of Petermann's strange spot size for single-mode fibres," Electronics Letters, Vol. 20, 144-145, 1984.
doi:10.1049/el:19840097

26. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman and Hall, London, UK, 1983.
doi:10.1007/978-1-4613-2813-1

27. Neumann, E. G., Single-mode Fibers: Fundamentals, Springer-Verlag, Berlin, 1988.

28. Messerly, M. J., J. W. Dawson, R. J. Beach, and C. P. J. Barty, Optical fiber having wave-guiding rings, US Patent No. 7907810, 2011.

29. Oh, S. H. and Y. S. Yoon, Optical fiber with smooth core efractive index profile and method of fabrication, US Patent No. 5761366, 1998.

30. Kim, J. H., M. H. Do, and J. H. Lee, Single mode optical fiber having multi-step core structure and method of fabricating the same, US Patent No. 6205279, 2001.

31. Dussardier, B., V. Rastogi, A. Kumar, and G. Monnom, "Large-mode-area leaky optical fiber fabricated by MCVD," Applied Optics, Vol. 50, 3118-3122, 2011.
doi:10.1364/AO.50.003118