Vol. 51
Latest Volume
All Volumes
PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-28
Electromagnetic Media with No Dispersion Equation
By
Progress In Electromagnetics Research B, Vol. 51, 269-289, 2013
Abstract
It has been known through some examples that parameters of an electromagnetic medium can be so de ned that there is no dispersion equation (Fresnel equation) to restrict the choice of the wave vector of a plane wave in such a medium, i.e., that the dispersion equation is satis ed identically for any wave vector. In the present paper, a more systematic study to define classes of media with no dispersion equation is attempted. In addition to the previously known examples, a novel class of Case 1 media with no dispersion equation is seen to emerge through the analysis making use of coordinate-free four-dimensional formalism in terms of multivectors, multiforms and dyadics.
Citation
Ismo Veikko Lindell Alberto Favaro , "Electromagnetic Media with No Dispersion Equation," Progress In Electromagnetics Research B, Vol. 51, 269-289, 2013.
doi:10.2528/PIERB13033107
http://www.jpier.org/PIERB/pier.php?paper=13033107
References

1. Kong, J. A., Electromagnetic Wave Theory, 353, EMW Publishing, Cambridge, MA, 2005.

2. Hehl, F. W. and Y. Obukhov, Foundations of Classical Electrodynamics, Birkhäuser, Boston, 2004.

3. Balakin, A. and W. Zimdahl, "Optical metrics and birefringence of anisotropic media," Gen. Relativ. Gravit., Vol. 37, No. 10, 1731-1751, 2005.
doi:10.1007/s10714-005-0155-3

4. Obukhov, Y., T. Ramos, and G. Rubilar, "Relativistic Lagrangian model of a nematic liquid crystal interacting with an electromagnetic field ," Phys. Rev. E, Vol. 86, 031703, 2012.
doi:10.1103/PhysRevE.86.031703

5. Lindell, I. V., L. Bergamin, and A. Favaro, "Decomposable medium condition in four-dimensional representation," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 367-376, 2012.
doi:10.1109/TAP.2011.2167937

6. Dahl, M., "Characterization and representation of non-dissipative electromagnetic medium with two Lorentz null cones," J. Math. Phys., Vol. 54, 011501, 2013.
doi:10.1063/1.4773832

7. Lämmerzahl, C. and F. W. Hehl, "Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics," Phys. Rev. D, Vol. 70, 105022, 2004.
doi:10.1103/PhysRevD.70.105022

8. Itin, Y., "Nonbirefringence conditions for spacetime," Phys. Rev. D, Vol. 72, 087502, 2005.
doi:10.1103/PhysRevD.72.087502

9. Favaro, A. and L. Bergamin, "The non-birefringent limit of all linear skewonless media and its unique light-cone structure," Ann. Phys., Vol. 523, No. 5, 383-401, Berlin, 2011.
doi:10.1002/andp.201000140

10. Dahl, M., "Determination of an electromagnetic medium from the Fresnel surface ," J. Phys. A: Math. Theor., Vol. 45, 405203, 2012.
doi:10.1088/1751-8113/45/40/405203

11. Lindell, I. V., "The class of bi-anisotropic IB media," Progress In Electromagnetics Research, Vol. 57, 1-18, 2006.
doi:10.2528/PIER05061302

12. Lindell, I. V. and A. H. Sihvola, "Uniaxial IB-medium interface and novel boundary conditions," IEEE Trans. Antennas Propag., Vol. 57, No. 3, 694-700, Mar. 2009.
doi:10.1109/TAP.2009.2013431

13. Lindell, I. V., L. Bergamin, and A. Favaro, "The class of electromagnetic P-media and its generalization," Progress In Electromagnetics Research B, Vol. 28, 143-162, 2011.

14. Favaro, A., Recent advances in electromagnetic theory, Ph.D. Thesis, Imperial College, London, 2012.

15. Lindell, I. V., On electromagnetic fields in skewon-axion media, ICEAA' 12, 58-61, Cape Town, South Africa, Sep. 2012.

16. Deschamps, G. A., Electromagnetics and differential forms, Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.

17. Lindell, I. V., Differential Forms in Electromagnetics, Wiley, New York, 2004.

18. Post, E. J., Formal Structure of Electromagnetics, North-Holland Pub. Co., 1962, Reprinted: Dover, New York, 1997.

19. Lindell, I. V., "Electromagnetic wave equation in differential-form representation," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.
doi:10.2528/PIER05021002

20. Obukhov, Y., T. Fukui, and G. Rubilar, "Wave propagation in linear electrodynamics," Phys. Rev. D, Vol. 62, 044050, 2000.
doi:10.1103/PhysRevD.62.044050

21. Rubilar, G., "Linear pre-metric electrodynamics and deduction of the light cone," Ann. Phys., Vol. 11, No. 10-11, 717-782, Leipzig, 2002.
doi:10.1002/1521-3889(200211)11:10/11<717::AID-ANDP717>3.0.CO;2-6

22. Itin, Y., "On light propagation in premetric electrodynamics: The covariant dispersion relation," J. Phys. A, Vol. 42, 475402, 2009.
doi:10.1088/1751-8113/42/47/475402

23. Gibbs, J. W. and E. B. Wilson, Vector Analysis, Charles Scribner's Sons, 1909, Reprinted: Dover, New York, 1960.

24. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd Ed., IEEE Press, New York, 1995.

25. Schuller, F., C. Witte, and M. Wohlfarth, "Causal structure and algebraic classification of non-dissipative linear optical media," Ann. Phys., Vol. 325, 1853-1883, NY, 2010.

26. Dahl, M., "A restatement of the normal form theorem for area metrics," Int. J. Geometric Methods in Modern Phys., Vol. 9, No. 5, 1250046, 2012.
doi:10.1142/S0219887812500466

27. Lindell, I. V., "Inverse for the skewon medium dyadic," Progress In Electromagnetics Research, Vol. 63, 21-32, 2006.
doi:10.2528/PIER06062201