Vol. 56
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-11-01
A Hybrid Numerical-Analytical Model for the Electromagnetic Characterization of the Admittance Matrix of Scattering Objects
By
Progress In Electromagnetics Research B, Vol. 56, 203-218, 2013
Abstract
The aim of this work is to implement a hybrid approach able to provide an efficient solution of the electromagnetic coupling between an antenna and an obstacle distant few meters away. The idea is to divide the problem into a small number of less complex sub-problems exploiting the advantage of generating the admittance matrix that describes the scattering problem by a numerical code. To this end, the electromagnetic field impinging on the object has been characterized by means of a proper number of very narrow beams; for each beam the scattering problem has been solved by a commercial code; finally, the total admittance matrix has been obtained as composition of all the scattering contributions. The resulting echoof a moving obstacle has been compared with that measured by experimental investigations, both for metallic and dielectric bodies.
Citation
Paola Russo, Desar Shahu, Alfredo De Leo, Valter Mariani Primiani, Lorenzo Scalise, and Graziano Cerri, "A Hybrid Numerical-Analytical Model for the Electromagnetic Characterization of the Admittance Matrix of Scattering Objects," Progress In Electromagnetics Research B, Vol. 56, 203-218, 2013.
doi:10.2528/PIERB13080901
References

1. Harrington, R. F., Field Computation by Moment Methods, Oxford University Press, USA, 1993.
doi:10.1109/9780470544631

2. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," Journal of the Optical Society of America A: Optics and Image Science, and Vision, Vol. 11, No. 4, 1491-1499, 1994.
doi:10.1364/JOSAA.11.001491

3. Coccioli, R., T. Itoh, G. Pelosil, and P. P. Silvester, "Finite-elements methods in microwaves: A selected bibliography," IEEE Antennas Propagation Magazine, Vol. 38, No. 6, 34-48, 1996.
doi:10.1109/74.556518

4. Taflove, A. and S. C. Hagness, "Computational Electrodynamics," Artech house, 160, 2000.

5. Yang, P. and K. N. Liou, "Finite difference time domain method for light scattering by non spherical and inhomogeneous particles," Light Scattering by Non spherical Particles: Theory, Measurements, and Applications, 2000.

6. Hadi, M. F. and M. Piket-May, "A modified FDTD (2, 4) scheme for modelling electrically large structures with high-phase scheme for modelling electrically large structures with high-phase," IEEE Trans. Antennas Propagation, Vol. 45, No. 2, 254-264, 1997.
doi:10.1109/8.560344

7. Manry, C. W., Manry, C. W., S. L. Broschat, Jr., and J. B. Schneider, "Higher order FDTD methods for large problems," ACES Journal, Vol. 10, 17-29, 1995.

8. Sarkar, T. and S. Rao, "The application of the conjugate gradient method for the solution of electromagnetic scattering from arbitrarily oriented wire antennas ," IEEE Trans. Antennas Propagation, Vol. 32, No. 4, 398-403, 1984.
doi:10.1109/TAP.1984.1143331

9. Michalski, K. A. and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Trans. Antennas Propagation, Vol. 45, No. 3, 508-519, 1997.
doi:10.1109/8.558666

10. Cerri, G., R. De Leo, and V. Mariani Primiani, "A rigorous model for radiated emission prediction in PCB circuits," IEEE Trans. on Electromagnetic Compatibility, Vol. 35, No. 1, 102-109, 1993.
doi:10.1109/15.249404

11. Kolundzija, B. M., "Kolundzija, B. M., Electromagnetic modeling of composite metallic and dielectric structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 7, 1021-1032, 1999.
doi:10.1109/22.775434

12. Cerri, G., P. Russo, A. Schiavoni, G. Tribellini, and P. Bielli, "MoM-FDTD hybrid technique for analysing scattering problems," Electronic Letters, Vol. 34, No. 5, 438-440, 1998.
doi:10.1049/el:19980394

13. Abd-Alhameed, R. A., P. S. Excell, M. A. Mangoud, and J. A. Vaul, "Computation of radiated and scattered field using separate frequency domain moment-method regions and frequency domain MoM-FDTD hybrid methods," Proceedings of the 1999 IEE National Conference on Antennas and Propagation, 53-56, Mar. 1999.
doi:10.1049/cp:19990014

14. Scalise, L., V. Mariani Primiani, P. Russo, A. De Leo, D. Shahu, and G. Cerri, "Wireless sensing for the respiratory activity of human beings: Measurements and wide-band numerical analysis," International Journal of Antennas and Propagation, Vol. 2013.
doi:ISSN: 16875869, Doi: 10.1155/2013/396459

15. Microwave Studio "CST-Computer Simulation Technology, Bad Nuheimer Str. 19, 64289 Darmstadt,", 2010.

16. Balanis, C. A., Antenna Theory: Analysis and Design, , John Wiley & Sons, Publishers, Inc., New York, 2005.