Vol. 55
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-09-24
Magnetic Field Distribution and Levitation Force Calculation in Htsc-Pmg Maglev Vehicles
By
Progress In Electromagnetics Research B, Vol. 55, 63-86, 2013
Abstract
This paper presents a new analytical method for predicting magnetic field distribution and levitation force in three configurations of high temperature superconducting (HTSC) maglev vehicles. The permanent magnet guideways (PMG) are composed with ferromagnetic materials and NdFeB permanent magnets. The proposed analytical model is based on the resolution in each region of Laplace's and Poisson's equations by using the technique of separation of variables. For the study, we consider the HTSC as a perfect diamagnetic material. The boundary conditions and Fourier series expansion of interfaces conditions between each region are used to find the solution of magnetic field. The developed analytical method is extended to compute the magnetic field distribution generated by the three types of PMGs when removing the HTSC bulk. Magnetic field distribution and vertical force obtained analytically are compared with those issued from the finite element method (FEM).
Citation
Kamel Boughrara, and Rachid Ibtiouen, "Magnetic Field Distribution and Levitation Force Calculation in Htsc-Pmg Maglev Vehicles," Progress In Electromagnetics Research B, Vol. 55, 63-86, 2013.
doi:10.2528/PIERB13082705
References

1. Zhang, J., Y. Zeng, J. Cheng, and X. Tang, "Optimization of permanent magnet guideway for HTS maglev vehicle with numerical methods," IEEE Trans. on Applied Superconductivity, Vol. 18, No. 3, 1681-1686, September 2008.
doi:10.1109/TASC.2008.2000900

2. Deng, Z., J. Zheng, J. Li, G. Ma, Y. Lu, Y. Zhang, S. Wang, and J. Wang, "Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway," Materials Science and Engineering B, Vol. 151, 117-121, 2008.
doi:10.1016/j.mseb.2008.03.011

3. Liu, L., J.Wang, S.Wang, L.Wang, and J. Li, "Flux concentrator optimization of PMG for high-temperature superconducting maglev vehicle system," J. Low Temperature Physics, Vol. 157, 67-72, 2009.
doi:10.1007/s10909-009-9926-7

4. Del-Valle, N., "Magnet guideways for superconducting maglevs: Comparison between Halbach-type and conventional arrangements of permanent magnets," J. Low Temperature Physics, Vol. 162, 62-71, 2011.
doi:10.1007/s10909-010-0225-0

5. Dias, D. H. N., G. G. Sotelo, F. Sass, E. S. Motta, R. de Andrade, Jr., and R. M. Stephan, "Dynamical tests in a linear superconducting magnetic bearing," Physics Procedia, Vol. 36, 1049-1054, 2012.
doi:10.1016/j.phpro.2012.06.104

6. Stephan, R. M., R. Nicolsky, M. A. Neves, A. C. Ferreira, R. de Andrade, Jr., M. A. Cruz Moreira, M. A. Rosario, and O. J. Machado, "A superconducting levitation vehicle prototype," Physica C, Vol. 408, 932-934, 2004.
doi:10.1016/j.physc.2004.03.169

7. Jin, J., L. Zheng, Y. Guo, W. Xu, and J. Zhu, "Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension," Physica C, Vol. 471, 520-527, 2011.
doi:10.1016/j.physc.2011.05.250

8. Werfel, F. N., U. Floegel-Delor, R. Rothfeld, T. Riedel, D. Wippich, B. Goebel, and P. Schirrmeister, "Bulk superconductors in mobile application," Physics Procedia, Vol. 36, 948-952, 2012.
doi:10.1016/j.phpro.2012.06.235

9. Werfel, F. N., U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, and P. Schirrmeister, "Superconductor bearings, flywheels and transportation," Superconductor Science and Technology, Vol. 25, 1-16, 2012.

10. Male, G., T. Lubin, S. Mezani, and J. Leveque, "Analytical calculation of the flux density distribution in a superconducting reluctance machine with HTS bulks rotor," Mathematics and Computers in Simulation, 1-14, 2013.

11. Motta, E. S., R. M. Stephan, J. H. Norman, H. C. Ramos, G. G. Sotelo, and D. H. N. Dias, "Optimization of superconducting magnetic rail using a feasible direction interior point algorithm," International Conference on Engineering Optimization, 1-5, June 2008.

12. Li, W., K. T. Chau, and J. Li, "Simulation of a tubular linear magnetic gear using HTS bulks for field modulation," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 3, 1167-1170, June 2011.
doi:10.1109/TASC.2010.2080255

13. Motta, E. S., D. H. N. Dias, G. G. Sotelo, H. O. C. Ramos, J. H. Norman, and R. M. Stephan, "Optimization of a linear superconducting levitation system," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 5, 3548-3554, October 2011.
doi:10.1109/TASC.2011.2161986

14. Barba, P. D. and R. Palka, "Optimization of the HTSC-PM interaction in magnetic bearings by a multiobjective design," Studies in Computational Intelligence, Vol. 119, 83-90, 2008.
doi:10.1007/978-3-540-78490-6_10

15. Palka, R., "Modeling of high temperature superconductors and their practical applications," International Compumag Society Newsletter, Vol. 12, No. 3, 3-12, November 2005.

16. Lu, Y., X. Bai, Y. Ge, and J. Wang, "Influence of thickness on the levitation force of high-Tc bulk over a permanent magnetic guideway with numerical method ," J. Supercond Nov. Magn., Vol. 24, 1967-1970, 2011.
doi:10.1007/s10948-011-1154-0

17. Dias, D. H. N., E. S. Motta, G. G. Sotelo, and R. Andrade, Jr., "Experimental validation of field cooling simulations for linear superconducting magnetic bearings," Superconductor Science and Technology, Vol. 23, 1-6, 2010.

18. Dias, D. H. N., E. S. Motta, G. G. Sotelo, R. Andrade, R. M. Stephane, L. Kuehn, O. Haas, and L. Schultz, "Simulations and tests of superconducting linear bearings for a MAGLEV prototype," IEEE Trans. on Applied Superconductivity, Vol. 19, No. 3, 2120-2123, June 2009.
doi:10.1109/TASC.2009.2019203

19. Jin, J. X., L. H. Zheng, Y. G. Guo, J. G. Zhu, C. Grantham, C. C. Sorrel, and W. Xu, "High-temperature superconducting linear synchronous motors integrated with HTS magnetic levitation components," IEEE Trans. on Applied Superconductivity, Vol. 22, No. 5, 5202617, October 2012.
doi:10.1109/TASC.2012.2210893

20. Ma, G.-T., "Considerations on the finite-element simulation of high-temperature superconductors for magnetic levitation purposes," IEEE Trans. on Applied Superconductivity, Vol. 23, No. 5, 3601609, October 2013.
doi:10.1109/TASC.2013.2259488

21. Wang, S., J. Zheng, H. Song, X.Wang, and J.Wang, "Experiment and numerical calculation of high temperature superconducting maglev," IEEE Trans. on Applied Superconductivity , Vol. 15, No. 2, 2277-2280, June 2005.
doi:10.1109/TASC.2005.849630

22. Zheng, J., H. Song, J. Wang, S. Wang, M. Liu, and H. Jing, "Numerical method to the excited high-tc superconducting levitation system above the NdFeB guideway," IEEE Trans. on Magnetics, Vol. 42, No. 4, 947-950, April 2006.
doi:10.1109/TMAG.2006.871639

23. Dias, D. H. N., G. G. Sotelo, and R. Andrade, "Study of the lateral force behavior in a fild cooled superconducting linear bearing," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 3, 1533-1537, June 2011.
doi:10.1109/TASC.2010.2090635

24. Costamagna, E., P. D. Barba, M. E. Mognaschi, and A. Savini, "Fast algorithms for the design of complex-shape devices in electromechanics," Computational Methods for Electrical Devices Design, Vol. 327, 59-86, 2010.
doi:10.1007/978-3-642-16225-1_4

25. Boughrara, K., T. Lubin, R. Ibtiouen, and N. Benallal, "Analytical calculation of parallel double excitation and spoke-type permanent-magnet motors; simplified versus exact model," Progress In Electromagnetics Research B, Vol. 47, 145-178, 2013.

26. Lubin, T., K. Berger, and A. Rezzoug, "Inductance and force calculation for axisymmetric coil systems including an iron core of finite length," Progress In Electromagnetics Research B, Vol. 41, 377-396, 2012.

27. Sotelo , G. G., D. H. N. Dias, R. Andrade, Jr., R. M. Stephane, N. Del-Valle, A. Sanchez, C. Navau, and D. Chen, "Experimental and theoretical levitation forces in a superconducting bearing for a real-scale maglev system," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 5, 3532-3540, October 2011.
doi:10.1109/TASC.2011.2159114

28. Sotelo, G. G., D. H. N. Dias, O. J. Machado, E. D. David, R. Andrade, Jr., R. M. Stephane, and G. C. Costa, "Experiments in a real scale maglev vehicle prototype," Journal of Physics: Conference Series, Vol. 234, No. 032054, 1-7, 2010.

29. Sotelo, G. G., R. de Andrade, Jr., D. H. N. Dias, A. C. Ferreira, F. Costa, O. J. Machado, R. A. H. de Oliveira, M. D. A. Santos, and R. M. Ste, "Tests with one module of the Brazilian Maglev-Cobra vehicle," IEEE Trans. on Applied Superconductivity , Vol. 23, No. 3, 3601204, June 2013.
doi:10.1109/TASC.2013.2237875

30. Wang, J., S. Wang, and J. Zheng, "Recent development of high temperature superconducting maglev system in China," IEEE Trans. on Applied Superconductivity, Vol. 19, No. 3, 2142-2142, June 2009.
doi:10.1109/TASC.2009.2018110

31. Meeker, D. C., Finite Element Method Magnetics, Ver. 4.2 (April 1, 2009 Build).
doi:http://www.femm.info