Vol. 56
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-11-12
Designing an Octave-Bandwidth Doherty Amplifier Using a Novel Power Combination Method
By
Progress In Electromagnetics Research B, Vol. 56, 327-346, 2013
Abstract
In this paper, an octave bandwidth Doherty power amplifier (DPA) using a novel combiner is presented. The fundamental bandwidth limitation of the load modulation concept of a conventional Doherty structure is solved based on the proposed combination method. For verification, an octave bandwidth asymmetric Doherty architecture is implemented by using gallium-nitride (GaN) HEMT Cree CGH40010 and CGH40025 devices in the carrier and peaking amplifiers, respectively. The carrier and peaking amplifiers are designed to achieve optimal operation with 25 Ω load and source impedances. The reduced load and source impedances simplify the matching circuits for broadband operation. Key building blocks, including the proposed combiner, carrier and peaking amplifiers as well as the 50/25 Ω input power divider, are outlined. The measurement results represent higher than 37% and 52% drain efficiencies in 6 dB load modulation region across the frequency range from 0.85 to 1.85 GHz and 0.90 to 1.60 GHz, respectively. The implemented Doherty amplifier represents acceptable linearity across the whole operation frequency range. In two-tone signal characterization, the implemented DPA performs with a drain efficiency of 55% and an inter-modulation distortion (IMD) of -30 dBc at an average output power of 41.2 dBm at the center operation frequency of 1.35 GHz. In order to observe wideband signal characterization, a single carrier wideband code-division multiple access (W-CDMA) signal with a peak-to-average power ratio (PAPR) of 6.5 dB is applied and a drain efficiency of 51% with an adjacent-channel leakage ratio (ACLR) of -31 dBc is achieved at an average output power of 38.4 dBm.
Citation
Necip Sahan, and Simsek Demir, "Designing an Octave-Bandwidth Doherty Amplifier Using a Novel Power Combination Method," Progress In Electromagnetics Research B, Vol. 56, 327-346, 2013.
doi:10.2528/PIERB13092003
References

1. Steer, M., "Beyond 3G," IEEE Microw. Mag., Vol. 8, No. 1, 76-82, 2007.

2. Raab, F. H., P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 814-826, 2002.
doi:10.1109/22.989965

3. Raab, F. H., "Effciency of Doherty RF power-amplifier systems," IEEE Trans. on Broadcasting, Vol. 33, No. 3, 77-83, 1987.
doi:10.1109/TBC.1987.266625

4. Cripps, S. C., "Doherty and Chireix," Advanced Techniques in RF Power Amplifier Designs, 33-72, 2002.

5. Kim, B., J. Kim, I. Kim, and J. Cha, "The Doherty power amplifier," IEEE Microw. Mag., Vol. 7, No. 5, 42-50, 2006.
doi:10.1109/MW-M.2006.247914

6. Lee, Y. S., M. W. Lee, and Y. H. Jeong, "A highly linear and effcient two-stage GaN HEMT asymmetrical Doherty amplifier for WCDMA applications," Microwave and Optical Technology Letters, Vol. 51, No. 6, 1464-1467, 2009.
doi:10.1002/mop.24387

7. Lee, Y., M. Lee, and Y. Jeong, "Unequal-cells-based GaN HEMT Doherty amplifier with an extended effciency range," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 8, 536-538, 2008.
doi:10.1109/LMWC.2008.2001015

8. Kim, J., B. Fehri, S. Boumaiza, and J. Wood, "Power effciency and linearity enhancement using optimized asymmetrical Doherty power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 425-434, 2011.
doi:10.1109/TMTT.2010.2086466

9. Moon, J., J. Kim, I. Kim, J. Kim, and B. Kim, "A wideband envelope tracking Doherty amplifier for WiMAX systems," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 1, 49-51, 2008.
doi:10.1109/LMWC.2007.912019

10. Lee, M. W., S. H. Kam, Y. S. Lee, and Y. H. Jeong, "A highly effcient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2537-2545, 2010.
doi:10.1163/156939310793675619

11. Feng, Y., Y. Liu, C. Yu, S. Li, J. Li, and X. Zheng , "Design of linearity improved asymmetrical GaN Doherty power amplifier using composite right/left-handed transmission lines," Progress In Electromagnetics Research B, Vol. 53, 89-106, 2013.

12. Zhou, R. W., Y. Dong, and J. F. Bao, "A 460MHz Doherty amplifier for IMT-advanced system," Progress In Electromagnetics Research Letters, Vol. 32, 187-195, 2012.

13. Wu, D. Y. and S. Boumaiza, "A modified Doherty configuration for broadband amplification using symmetrical devices," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 10, 3201-3213, 2012.
doi:10.1109/TMTT.2012.2209446

14. Darraji, R., F. M. Ghannouchi, and M. Helaoui, "Mitigation of bandwidth limitation in wireless Doherty amplifiers with substantial bandwidth enhancement using digital techniques," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 9, 2875-2885, 2012.
doi:10.1109/TMTT.2012.2207910

15. Kang, D., D. Kim, Y. Cho, B. Park, J. Kim, and B. Kim, "Design of bandwidth-enhanced Doherty power amplifiers for handset applications," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3474-3483, 2011.
doi:10.1109/TMTT.2011.2171042

16. Sarkeshi, M., O. B. Leong, and A. Van Roermund, "A novel Doherty amplifier for enhanced load modulation and higher bandwidth," IEEE MTT-S Int. Microw. Symp. Dig., 763-766, 2008.

17. Qureshi, J. H., N. Li, W. C. E. Neo, F. van Rijs, I. Blednov, and L. C. N. de Vreede, "A wide-band 20W LDMOS Doherty power amplifier," IEEE MTT-S Int. Microw. Symp. Dig., 1504-1507, 2010.

18. Bathich, K., A. Z. Markos, and G. Boeck, "A wideband GaN Doherty amplifier with 35% fractional bandwidth," Proc. 40th Eur. Microw. Conf., 1006-1009, 2010.

19. Bathich, K., A. Z. Markos, and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty amplifier," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 934-944, 2011.
doi:10.1109/TMTT.2010.2098040

20. Kang, D., D. Kim, J. Moon, and B. Kim, "Broadband HBT Doherty power amplifiers for handset applications," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 4031-4039, 2010.

21. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Trans. Microw. Theory Tech. , Vol. 60, No. 1, 99-111, 2012.
doi:10.1109/TMTT.2011.2175237

22. Gustafsson, D., C. M. Andersson, and C. Fager, "A modified Doherty power amplifier with extended bandwidth and reconfig- urable effciency," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 533-542, 2013.
doi:10.1109/TMTT.2012.2227783

23. Pozar, D. M., "Tapered lines," Microwave Engineering, 255-261, 2005.

24. Lin, S. and A. E. Fathy, "Development of a wideband highly effcient GaN VMCD VHF/UHF power amplifier," Progress In Electromagnetics Research C, Vol. 19, 135-147, 2011.