Vol. 58
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-02-25
Regularization Imaging Algorithm with Accurate g Matrix for Near-Field MMW Synthetic Aperture Imaging Radiometer
By
Progress In Electromagnetics Research B, Vol. 58, 193-203, 2014
Abstract
In order to improve the reconstruction accuracy of near-field SAIR, a novel regularization imaging algorithm based on an accurate G matrix is proposed in this paper. Due to the fact that the regularization reconstruction is usually an underdetermined problem, inaccurate operation matrix G will lead to great reconstruction error in the imaging results, or even the normal imaging cannot be obtained. In this paper, we establish an accurate G matrix based on the accurate imaging model of near-field SAIR. Compared with the traditional G matrix with some unnecessary approximations, the proposed G matrix without approximation can improve the reconstruction accuracy effectively. For improving the accuracy of matrix G further, the corresponding parameters are corrected according to the RMSE between the imaging results of the regularization method and modified FFT method which is not sensitive to the parameters' change. The effectiveness of this calibration method has been tested by 1D simulation experiments. Moreover, the 2D simulation experiments demonstrate that the proposed accurate G matrix can improve the imaging accuracy of regularization method effectively. Finally, the 1D imaging experiment is performed to test the effectiveness of the proposed method for the actual synthetic aperture imaging further.
Citation
Jianfei Chen, Yuehua Li, Jianqiao Wang, Yuanjiang Li, and Yilong Zhang, "Regularization Imaging Algorithm with Accurate g Matrix for Near-Field MMW Synthetic Aperture Imaging Radiometer," Progress In Electromagnetics Research B, Vol. 58, 193-203, 2014.
doi:10.2528/PIERB14011602
References

1. Appleby, R. and R. N. Anderton, "Millimeter-wave and submillimeter-wave imaging for security and surveillance," Proceedings of the IEEE, Vol. 95, No. 8, 1683-1690, Aug. 200.
doi:10.1109/JPROC.2007.898832

2. Sheen, M. D., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, Sep. 2001.
doi:10.1109/22.942570

3. Appleby, R., D. A. Wikner, R. Trebits, and J. L. Kurtz, "Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz," Proceedings of the IEEE, Vol. 5077, 1-6, 2003.

4. Chen, H.-M., S. Lee, R. M. Rao, M. A. Slamani, and P. K. Varshney, "Imaging for concealed weapon detection: A tutorial overview of development in imaging sensors and processing," IEEE Signal Processing Magazine, Vol. 22, No. 2, 52-61, Mar. 2005.
doi:10.1109/MSP.2005.1406480

5. Fetterman, M. R., J. Grata, G. Jubic, W. L. Kiser, Jr., and A. Visnansky, "Simulation, acquisition and analysis of passive millimeter-wave images in remote sensing applications," Optics Express, Vol. 16, No. 25, 20503-20515, Dec. 2008.
doi:10.1364/OE.16.020503

6. Camps, A., J. Bara, I. C. Sanahuja, and F. Torres, "The processing of hexagonally sampled signals with standard rectangular techniques: Application to 2-D large aperture synthesis interferometric radiometers," IEEE Trans. Geosci. & Remote Sens., Vol. 35, No. 1, 183-190, Jan. 1997.
doi:10.1109/36.551946

7. Tanner, B. A., H. B. Lambrigsten, M. T. Gaier, and F. Torres, "Near field characterization of the GeoSTAR demonstrator," Proceedings of IEEE Geosci. Remote Sens. Symp., Denver, Co, USA, Jul. 2006.

8. Lucotte, B. M., B. Grafulla-Gonzalez, and R. A. Harvey, "Array rotation aperture synthesis for short range imaging at millimeter wavelengths," Radio Science, Vol. 44, No. 1, RS1006-1-RS1006-11, 2009.
doi:10.1029/2008RS003863

9. Mait, J. N., D. R. Martin, A. C. Schuetz, and W. D. Prather, "Millimeter wave imaging with engineered point spread functions," Optical Engineering, Vol. 51, No. 9, 091606-1, May 2012.
doi:10.1117/1.OE.51.9.091606

10. Rasche, V., R. Proksa, R. Sinkus, P. Bornert, and H. Eggers, "Resampling of data between arbitrary grids using convolution interpolation," IEEE Trans. Medical Imaging, Vol. 18, No. 5, 385-392, May 1999.
doi:10.1109/42.774166

11. Fessler, J. A. and P. B. Sutton, "Nonuniform fast Fourier transforms using min-max interpolation," IEEE Trans. Signal Processing, Vol. 51, No. 2, 560-574, Feb. 2003.
doi:10.1109/TSP.2002.807005

12. Beatty, P. J., G. D. Nishimura, and M. J. Pauly, "Rapid gridding reconstruction with a minimal oversampling ratio," IEEE Trans. Medical Imaging, Vol. 24, No. 6, 799-808, Jun. 2005.
doi:10.1109/TMI.2005.848376

13. Lannes, A., E. Anterrieu, and K. Bouyouvcef, "Fourier interpolation and reconstruction vis Shannontype techniques; Part I: Regularization principle," J. Modern Opt., Vol. 41, No. 8, 1537-1574, 1994.
doi:10.1080/09500349414552411

14. Lannes, A., E. Anterrieu, and K. Bouyouvcef, "Fourier interpolation and reconstruction vis Shannon type techniques; Part II: Technical developments and applications," J. Modern Opt., Vol. 43, No. 1, 105-138, 1996.
doi:10.1080/09500349608232728

15. Picard, B. and E. Anterrieu, "Comparison of regularized inversion methods in synthetic aperture imaging radiometry," IEEE Trans. Geosci. & Remote Sens., Vol. 43, No. 2, 218-224, Feb. 2005.
doi:10.1109/TGRS.2004.841482

16. Camps, A., J. Bar'a, F. Torres, and I. Corbella, "Extension of the CLEAN technique to the microwave imaging of continuous thermal sources by means of aperture synthesis radiometers," Progress In Electromagnetics Research, Vol. 18, 67-83, 1998.
doi:10.2528/PIER97041500

17. Zhang, C., J. Wu, H. Liu, and Y. J. Yan, "Imaging algorithm for synthetic aperture interferometric radiometer in near field," Science China Technological Sciences, Vol. 54, No. 8, 2224-2231, Aug. 2011.
doi:10.1007/s11431-011-4403-3

18. Yao, X., C. Zheng, J. Zhang, B. Yang, A. Hu, and J. Miao, "Near field image reconstruction algorithm for passive millimeter-wave imager bhu-2D-u," Progress In Electromagnetics Research C, Vol. 45, 57-72, Oct. 2013.

19. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field," Progress In Electromagnetics Research, Vol. 141, 517-535, Aug. 2013.
doi:10.2528/PIER13060702

20. Fessler, J. A. and W. L. Rogers, "Spatial resolution properties of penalized-likelihood image reconstruction methods: Space-invariant tomographs," IEEE Trans. Imag. Process., Vol. 5, No. 9, 1346-1358, Sep. 1996.
doi:10.1109/83.535846

21. Figueiredo, M. A. T., R. D. Nowak, and S. J.Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," IEEE Journal of Selected Topics n Signal Processing, Vol. 1, No. 4, 586-597, Apr. 2007.
doi:10.1109/JSTSP.2007.910281

22. Hale, E. T., W. Yin, and Y. Zhang, "Fixed-point continuation for L1 minimization: Methodology and convergence," SIAM Journal on Optimization, Vol. 19, No. 3, 1107-1130, Oct. 2008.
doi:10.1137/070698920

23. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, Vol. 2, No. 1, 183-202, Mar. 2009.
doi:10.1137/080716542

24. Wright, S. J., R. D. Nowak, and M. A. T. Figueiredo, "Sparse reconstruction by separable approximation," IEEE Trans. Signal Processing, Vol. 57, No. 7, 2479-2493, Jul. 2009.
doi:10.1109/TSP.2009.2016892