Vol. 61
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-12-04
Study of Human Exposure Using Kriging Method
By
Progress In Electromagnetics Research B, Vol. 61, 241-252, 2014
Abstract
This paper develops the kriging method to calculate the whole body Specific Absorption Rate (SAR) for any angle of incidence of a plane wave on any body model using a minimum number of Finite Difference Time Domain (FDTD) simulations. Practical application of this method is to study people's exposure. Thanks to kriging method, it will enable to answer to the challenge of studying the exposure in a realistic environment. This approach develops a new tool in order to improve the field of stochastic dosimetry. The kriging method is applied to a girl body model in order to determine the variogram model, then this model is validated on a boy body model. Thanks to only 40 numerical SAR values, kriging method enables to estimate any SAR value with a mean relative error under 3%.
Citation
Ourouk Jawad, David Lautru, Aziz Benlarbi-Delai, Jean Michel Dricot, and Philippe De Doncker, "Study of Human Exposure Using Kriging Method," Progress In Electromagnetics Research B, Vol. 61, 241-252, 2014.
doi:10.2528/PIERB14072907
References

1. ICNIRP "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300GHz)," Health Physics, Vol. 75, No. 4, 442, 1998.

2. ICNIRP "Statement on the guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Physics, Vol. 97, No. 3, 257-258, Sep. 2009.
doi:10.1097/HP.0b013e3181aff9db

3. ICNIRP "Exposure to high frequency electromagnetic fields, biological effiects and health consequences (100 kHz–300 GHz)," Review of the Scientific Evidence and Health Consequences, ICNIRP 16, 2009.

4. Habachi, A. E., E. Conil, A. Hadjem, E. Vazquez, M. F. Wong, A. Gati, G. Fleury, and J. Wiart, "Statistical analysis of whole-body absorption depending on anatomical human characteristics at a frequency of 2.1GHz," Phys. Med. Biol., Vol. 55, 1875-1887, 2010.
doi:10.1088/0031-9155/55/7/006

5. Dimbylow, P. J., A. Hirata, and T. Nagaoka, "Inter-comparison of whole-body averaged SAR in European and Japanese voxel phantoms," Phys. Med. Biol., Vol. 53, 5883-5897, 2008.
doi:10.1088/0031-9155/53/20/022

6. Findlay, R. P. and P. J. Dimbylow, "Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body," Phys. Med. Biol., Vol. 50, 3825-3835, 2005.
doi:10.1088/0031-9155/50/16/011

7. Akimoto, S., T. Nagaoka, K. Saito, S.Watanabe, M. Takahashi, and K. Ito, "Comparison of SAR in realistic fetus models of two fetal positions exposed to electromagnetic wave from business portable radio close to maternal abdomen," EMBC Annual International Conference of the IEEE, 734-737, Buenos Aires, 2010.

8. Quitin, F., "Channel modeling for polarized MIMO systems,", Ph.D. Thesis, Universit´e Libre de Bruxelles, 2011.

9. Quitin, F., C. Oestges, F. Horlin, and P. De Doncker, "A polarized clustered channel model for indoor MIMO systems at 3.6 GHz," IEEE Trans. Vehic. Tech., Vol. 59, No. 8, 3685-3693, Oct. 2010.
doi:10.1109/TVT.2010.2064795

10. Jawad, O., D. Lautru, A. Benlarbi-Dela¨ı, J. M. Dricot, F. Horlin, and P. De Doncker, "A human body model exposed to a cluster of waves: A statistical study of SAR," Progress In Electromagnetics Research C,, Vol. 30, 1-13, 2012.
doi:10.2528/PIERC12030804

11. Kuhn, S., W. Jennings, A. Christ, and N. Kuster, "Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models," Phys. Med. Biol., Vol. 54, 875-890, 2009.
doi:10.1088/0031-9155/54/4/004

12. Vermeeren, G., G. Joseph, C. Olivier, and F. Martens, "Statistical multipath exposure of a human in a realistic electromagnetic environment," Health Physics, Vol. 94, 345-354, 2008.
doi:10.1097/01.HP.0000298816.66888.05

13. Kientega, T., E. Conil, A. Hadjem, E. Richalot, A. Gati, M. F. Wong, O. Picon, and J. Wiart, "A surrogate model to assess the whole-body sar induced by multiple plane waves at 2.4GHz," Ann. Telecommun., Vol. 66, 419-428, 2011.
doi:10.1007/s12243-011-0261-z

14. Vermeeren, G., W. Joseph, and L. Martens, "Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment," Bioelectromagnetics, Vol. 34, 240-251, 2013.
doi:10.1002/bem.21762

15. Thielens, A., G. Vermeeren, W. Joseph, and L. Martens, "Stochastic method for determination of the organ-specific averaged SAR in realistic environments at 950 MHz," Bioelectromagnetics, Vol. 34, 549-562, 2013.

16. Bamba, A., W. Joseph, G. Vermeeren, E. Tanghe, D. P. Gaillot, J. Andersen, J. Nielsen, M. Lienard, and L. Martens, "Validation of experimental whole-body SAR assessment method in a complex indoor environment," Bioelectromagnetics, Vol. 34, 122-132, 2013.
doi:10.1002/bem.21749

17. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "Human exposure to radio base-station antennas in urban environment," Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1996-2002, 2000.
doi:10.1109/22.884188

18. Silly-Carette, J., D. Lautru, M. F. Wong, A. Gati, J. Wiart, and V. Fouad. Hanna, "Variability on the propagation of a plane wave using stochastic collocation methods in a bioelectromagnetic application," IEEE Microwave Communications Letters, Vol. 19, No. 4, 185-187, 2009.
doi:10.1109/LMWC.2009.2015481

19. Ghanmi, A., N. Varsier, A. Hadjem, J.Wiart, C. Person, O. Picon, and E. Conil, "Exposure analysis of children reproductive organs to EMF emitted by a mobile phone placed nearby," BioEM 2013: Joint Meeting of the Bioelectromagnetics Society (BEMS) and the European BioElectromagnetics Association (EBEA), 2013.

20. Wackernagel, H., Multivariate Geostatistics, Springer, 1998.
doi:10.1007/978-3-662-03550-4

21. Cressie, N., Statistics for Spatial Data, Wiley-Interscience, 1992.

22. Yee, K. S., "Numerical solution of initial boundary value problems involving maxwells equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

23. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-DIfference Time-domain method, 3rd Edition, Artech House, 2005.

24. Quitin, F., C. Oestges, F. Horlin, and P. De Doncker, "Channel correlation and cross-polar ratio in multi-polarized MIMO channels: Analytical derivation and experimental validation," IEEE 68th Vehicular Technology Conference, VTC 2008-Fall, 1-5, 2008.
doi:10.1109/VETECF.2008.40

25. Sibille, A., C. Oestges, and A. Zanella, MIMO from Theory to Implementation, Elsevier, 2010.

26. IEEE Computer Society "Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications,", IEEE Standard Association, Mar. 2012.

27. Chiles, J. P. and P. Delfiner, Geostatistics: Modeling Spatial Uncertainty, Wiley-Interscience, 1990.

28. Christ, A., et al. "The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations," Phys. Med. Biol., Vol. 55, 23-38, 2010.
doi:10.1088/0031-9155/55/2/N01

29. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

30. Myers, D. E. and A. Journel, "Variograms with zonal anisotropies non-invertible kriging systems," Mathematical Geology, Vol. 7, 779-785, 1990.
doi:10.1007/BF00890662

31. Gill, P. E. and W. Murray, "Algorithms for the solution of the nonlinear least-squares problem," SIAM Journal on Numerical Analysis, Vol. 15, No. 5, 977-992, 1978.
doi:10.1137/0715063