Vol. 61
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-11-26
A New Hybrid MoM -GEC Asymptotic Method for Electromagnetic Scattering Computation in Waveguides
By
Progress In Electromagnetics Research B, Vol. 61, 197-210, 2014
Abstract
This paper presents a new hybridization between MoM-GEC and some asymptotic methods. In fact, a new hybrid current test function based on Physical Optic (PO) and a modal method is developed. The approach consists in approximating the total current on an invariant metallic pattern on two parts. The inside of metal is governed by PO method; however, the edges are modeled by infinite cylinders and described by Hankel functions (modal method). The considered single test function is required then by MoM method to replace a lot of sinusoidal or triangular test functions, in order to get a rapid convergence and less computational time. For validation purposes, the new developed hybrid approach is applied to compute scattering in different structures. The obtained input impedances, currents and fields distributions are in agreement with those obtained by MoM method. Considerable gain in computational time and memory resources is achieved.
Citation
Mohamed Hajji, Samir Mendil, and Taoufik Aguili, "A New Hybrid MoM -GEC Asymptotic Method for Electromagnetic Scattering Computation in Waveguides," Progress In Electromagnetics Research B, Vol. 61, 197-210, 2014.
doi:10.2528/PIERB14101303
References

1. Silvester, P. P. and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd edition, Cambridge University Press, New-York, 1996.
doi:10.1017/CBO9781139170611

2. Steel, C. W. and S. V. Forim, Numerical Computation of Electric and Magnetic Fields, Van Nostrand Reinhold Company, New-York, 1987.
doi:10.1007/978-94-015-7143-2

3. Yee, K., "Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

4. Taflove, A. E. and M. E. Brodwin, "Numerical solution of steady state electromagnetic scattering problems using the time-dependent Maxwell’s equations," IEEE Trans. on Microwave Theory and Techniques, MTT, 1975.

5. Skarlatos, A., R. Schuhmann, and T. Weiland, "Solution of radiation and scattering problems in complex environments using a hybrid finite integration technique — Uniform theory of diffraction approach," IEEE Trans. Antennas and Propagation, Vol. 53, No. 10, 3347-3357, Oct. 2005.
doi:10.1109/TAP.2005.856358

6. Hoefer, W. J. R. and R. L. Beurle, "The transmission line matrix method --- Theory and applications," IEEE Trans. on Microwave Theory and Techniques, MTT, Vol. 33, No. 4, 370-377, Apr. 1987.

7. Saguet, P., "The 3D transmission line matrix method: Theory and comparison of the process," International Journal Numer. Model. Electron. Networks Devices Fields, Vol. 4, 1989.

8. Molinet, F., I. Andronov, and D. Bouche, "Asymptotic and Hybrid Methods in Electromagnetics," 2nd Edition, Vol. 51 of Electromagnetic Waves Series, IET, 2008.

9. Balanis, C. A., I. Andronov, and D. Bouche, Advanced Engineering Electromagnetics, Wiley, 1989.

10. Borovikov, V. A., B. Ye. Kinber, and D. Bouche, "Geometrical Theory of Diffraction,", Vol. 37, Electromagnetic Waves Series, IEE, 1994.

11. Sizun, H., Radio Wave Propagation, Springer-Verlag, 2005.

12. Milligan, T. A., Modern Antenna Design, 2nd Edition, John Wiley and Sons, 2005.
doi:10.1002/0471720615

13. Bouche, D. and F. Molinet, "Methodes Asymptotiques en Electromagnetisme,", Vol. 16, Mathematic and Applications, Springer-Verlag, 1994.

14. Zhaou, Y., X. W. Shi, and L. Xu, "Modeling with Nurbs surfaces used for the calculation of RCS," Progress In Electromagnetic Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903

15. Ufimtsev, P. Y. and F. Molinet, Elementary Edge Waves and the Physical Theory of Diffraction, Electromagnetics, Vol. 11, 125–159, 1991.

16. Ufimtsev, P., Fundamentals of the Physical Theory of Diffraction, John Wiley and Sons, 2007.
doi:10.1002/0470109017

17. Baudrand, H., "Representation by equivalent circuit of the integral methods in microwave passive elements," European Microwave Conference, Vol. 2, 1359-1364, Budapest, Hungary, Sep. 10-13, 1990.

18. Baudrand, H. and H. Aubert, "l’Electromagnetisme par les Schemas Equivalents," editions Cepadues, 2003.

19. Baudrand, H. and D. Bajon, "Equivalent circuit representation for integral formulations of electromagnetic problems," International Journal of Numerical Modelling-Electronic Networks Devices and Fields, Vol. 15, 23-57, Jan. 2002.
doi:10.1002/jnm.430

20. Zhou, P. B., Numerical Analysis of Electromagnetic Field, 1993.
doi:10.1007/978-3-642-50319-1

21. Ben Salah, T., Analyse dune Antenne Planaire: Utilisation des Fonctions Dattache dans la Methode de Galerkin, Rapport de Mastere, Ecole Nationale d’Ingenieurs de Tunis, Sep. 2003.

22. Markuwitz, N., Waveguide Handbook, Wiley-Interscience, New York, 1986.

23. Collin, E. R., Foundations for Microwave Engineering, Donald G. Dudley, Series Editor, IEEE Press, 2001.
doi:10.1109/9780470544662

24. Belhadj, H., S. Mili, and T. Aguili, "New implementation of the conjugate gradient based on the impedance operator to analyse electromagnetic scattering," Progress In Electromagnetic Research, Vol. 5, 241-300, 2011.

25. Mili, S., Approche des Circuits Equivalents Generalises Multi-Echelles Combinees a la Theorie de Groupe de Renormalisation pour la Modelisation Electromagnetique des Structures Fractales Passives et Actives, Thesis Manuscript, National Engineering School of Tunis, Tunisia, 2011.

26. Aguili, T., Modelisation des Composantes SFH Planaires par la Methode des Circuits Equivalents Generalisees, Thesis Manuscript, National Engineering School of Tunis, Tunisia, 2000.

27. Harrington, R. F., Field Computation by Moment Methods, IEEE Press Series on Electromagnetic Waves , 1993.
doi:10.1109/9780470544631

28. Hajji, M. and T. Aguili, "Contribution of active modes in the formulation of local modal operators of diffraction Γ and of surface impedance Zs," Conference on Electromagnetic Field Computation, CEFC, Annecy, Mai 2014.

29. Mili, S. and T. Aguili, "Electromagnetic study of planar pre-fractal structures using the scale changing technique," IEEE 18th International Conference on Microwave Radar and Wireless Communications (MIKON), Vilnius-Lithuania 2010.

30. Mili, S. and T. Aguili, "Electromagnetic study of planar periodic structures using a multi-scale approach," PIERS Proceedings, Marrakesh, Morocco, Mar. 20-23, 2011.

31. Mili, S., C. Larbi Aguili, and T. Aguili, "Study of fractal-shaped structures with PIN Diodes using the multi scale method combined to the generalized equivalent circuit modeling," Progress In Electromagnetics Research B, Vol. 27, 213-233, 2011.

32. Aubert, H., "The concept of scale-changing network in the global electromagnetic simulation of complex structures," Progress In Electromagnetics Research B, Vol. 16, 127-154, 2009.
doi:10.2528/PIERB09060504

33. Lai, B., N. Wang, H. B. Ywan, and C. H. Liang, "Hybrid method of higher-order MoM and Nystrom discretization PO for 3D PEC problems," Progress In Electromagnetics Research, Vol. 109, 381-389, 2010.
doi:10.2528/PIER10081401

34. Nie, X. C., Y. B. Gan, N. Yuan, and C. F. Wang, "An efficient hybrid method for analysis of slot arrays enclosed by a large radome," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 249-264, 2006.
doi:10.1163/156939306775777215

35. Lucente, E., G. Tiberi, A. Monorchio, G. Manara, and R. Mittra, "The characteristic basis function method (CBFM): A numerically efficient strategy for solving large electromagnetic scattering problems," Turk J. Elec. Engin, Vol. 16, No. 1, 2008.

36. Sen, S. G. and M. Kuzuoglu, "Analysis of high frequency plane wave scattering from a double negative cylinder via the modified watson transformation and debye expansion," Progress In Electromagnetics Research, Vol. 84, 55-92, 2008.

37. Li, C. Y. and D. Lesselier, "On a preliminary analysis of the electromagnetic small-scale modeling of composite panels: Periodic arrangement of circular cylindrical fibers," Journees Scientifiques URSI-France, Mars. 26-27, 2013.

38. Yousif, H. A. and A. Z. Elsherbeni, "Oblique incidence scattering from two eccentric cylinders," Journal of Electromagnetic Waves and Applications, Vol. 11, 1273-1288, 1997.
doi:10.1163/156939397X01151