Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-06-23

Decomposition of Electromagnetic Q and P Media

By Ismo Veikko Lindell and Alberto Favaro
Progress In Electromagnetics Research B, Vol. 63, 79-93, 2015
doi:10.2528/PIERB15030901

Abstract

Two previously studied classes of electromagnetic media, labeled as those of Q media and P media, are decomposed according to the natural decomposition introduced by Hehl and Obukhov. Six special cases based on either non-existence or sole existence of the three Hehl-Obukhov components, are defined for both medium classes.

Citation


Ismo Veikko Lindell and Alberto Favaro, "Decomposition of Electromagnetic Q and P Media," Progress In Electromagnetics Research B, Vol. 63, 79-93, 2015.
doi:10.2528/PIERB15030901
http://www.jpier.org/PIERB/pier.php?paper=15030901

References


    1. Capolino, F., Theory and Phenomena of Metamaterials, CRC Press, Boca Raton, FL, 2009.
    doi:10.1201/9781420054262

    2. Cheng, D. K. and J. A. Kong, "Covariant descriptions of bianisotropic media," Proc. IEEE, Vol. 56, No. 3, 248-251, 1968.
    doi:10.1109/PROC.1968.6268

    3. Kong, J. A., "Theorems of bianisotropic media," Proc. IEEE, Vol. 60, No. 9, 1036-1046, 1972.
    doi:10.1109/PROC.1972.8851

    4. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, 2005.

    5. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd Edition, University Press, Oxford, 1995.

    6. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
    doi:10.1109/PROC.1981.12048

    7. Lindell, I. V., Differential Forms in Electromagnetics, Wiley, New York, 2004.
    doi:10.1002/0471723096

    8. Lindell, I. V., Multiforms, Dyadics and Electromagnetic Media, Wiley, Hoboken, NJ, 2015.

    9. Hehl, F. W. and Yu. N. Obukhov, Foundations on Classical Electrodynamics, Birkhauser, Boston, 2003.

    10. Lindell, I. V., L. Bergamin, and A. Favaro, "The class of electromagnetic P-media and its generalization," Progress In Electromagnetics Research B, Vol. 28, 143-162, 2011.

    11. Lindell, I. V. and H. Wallen, "Differential-form electromagnetics and bianisotropic Q-media," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 957-968, 2004.
    doi:10.1163/156939304323105772

    12. Lindell, I. V. and H. Wallen, "Generalized Q-media and field decomposition in differential-form approach," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1045-1056, 2004.
    doi:10.1163/1569393042955397

    13. Favaro, A., "Recent advances in electromagnetic theory,", Ph.D. Thesis, Imperial College, London, 2012.

    14. Ni, W.-T., "Spacetime structure and asymmetric metric from the premetric formulation of electromagnetism," Phys. Lett. A, Vol. 379, 1297-1303, 2015.
    doi:10.1016/j.physleta.2015.03.004

    15. Einstein, A. and E. G. Straus, "A generalization of the relativistic theory of gravitation, II," Ann. Math., Vol. 47, No. 4, 731-741, 1946.
    doi:10.2307/1969231

    16. Schrodinger, E., Space-time Structure, Cambridge University Press, Cambridge, 1950.

    17. Lindell, I. V. and A. Favaro, "Electromagnetic media with no dispersion equation," Progress In Electromagnetics Research B, Vol. 51, 269-289, 2013.
    doi:10.2528/PIERB13033107

    18. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
    doi:10.1163/156939305775468741

    19. Lindell, I. V. and A. Sihvola, "Uniaxial IB-medium interface and novel boundary conditions," IEEE Trans. Antennas Propag., Vol. 57, No. 3, 694-700, Mar. 2009.
    doi:10.1109/TAP.2009.2013431

    20. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary condition and its realization with anisotropic metamaterial," Phys. Rev. E, Vol. 79, No. 2, 026604-7, 2009.
    doi:10.1103/PhysRevE.79.026604

    21. Lindell, I. V. and A. Sihvola, "Soft-and-hard/DB boundary conditions realized by a skewon-axion medium," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 768-774, 2013.
    doi:10.1109/TAP.2012.2223445

    22. Zhang, B., H. Chen, B.-I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside," Phys. Rev. Lett., Vol. 100, 063904, 2008.
    doi:10.1103/PhysRevLett.100.063904

    23. Yaghjian, A. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, 115022, 2008; ``Corrigendum,'' Ibid, Vol. 11, 039802, 2009.
    doi:10.1088/1367-2630/10/11/115022

    24. Yaghjian, A., "Extreme electromagnetic boundary conditions and their manifestation at the inner surfaces of spherical and cylindrical cloaks," Metamaterials, Vol. 4, 70-76, 2010.
    doi:10.1016/j.metmat.2010.03.006

    25. Shahvarpour, A., T. Kodera, A. Parsa, and C. Caloz, "Arbitrary electromagnetic conductor boundaries using Faraday rotation in a grounded ferrite slab," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 11, 2781-2793, 2010.
    doi:10.1109/TMTT.2010.2078010

    26. El-Maghrabi, H. M., A. M. Attiya, and E. A. Hashish, "Design of a perfect electromagnetic conductor (PEMC) boundary by using periodic patches," Progress In Electromagnetics Research M, Vol. 16, 159-169, 2011.
    doi:10.2528/PIERM10112201

    27. Zaluski, D., D. Muha, and S. Hrabar, "DB boundary based on resonant metamaterial inclusions," Metamaterials’ 2011, 820-822, Barcelona, Oct. 2011.

    28. Zaluski, D., S. Hrabar, and D. Muha, "Practical realization of DB metasurface," Appl. Phys. Lett., Vol. 104, 234106, 2014.
    doi:10.1063/1.4883405

    29. Khalid, M., N. Tedeschi, and F. Frezza, "On a lossy electric-magnetic uniaxial medium and its applications to boundary conditions," IEEE Trans. Antennas Propag., Vol. 63, 1686-1692, 2015.
    doi:10.1109/TAP.2015.2393873

    30. Prasolov, V. V., Problems and Theorems in Linear Algebra, American Mathematical Society, Providence, RI , 1994.