Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-09-23

Electromagnetic Fields in Quasi-Fractal Waveguides Coated with Chiral Nihility Metamaterial

By Samina Gulistan, Aqeel Abbas Syed, and Qaisar Naqvi
Progress In Electromagnetics Research B, Vol. 63, 203-216, 2015
doi:10.2528/PIERB15053004

Abstract

Solutions of Maxwell's equations for electromagnetic fields inside a waveguide coated with chiral nihility metamaterial and having one axis fractal are presented in this paper. A two-dimensional line source placed at the center of the waveguide is taken as an excitation. Power of electromagnetic fields inside the waveguide is determined, and results are plotted for various fractal dimension values ranging from 1 < D ≤ 2, and thickness of the chiral nihility coating.

Citation


Samina Gulistan, Aqeel Abbas Syed, and Qaisar Naqvi, "Electromagnetic Fields in Quasi-Fractal Waveguides Coated with Chiral Nihility Metamaterial," Progress In Electromagnetics Research B, Vol. 63, 203-216, 2015.
doi:10.2528/PIERB15053004
http://www.jpier.org/PIERB/pier.php?paper=15053004

References


    1. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

    2. Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, 2000.

    3. Debnath, L., "Recent applications of fractional calculus to science and engineering," International Journal of Mathematics and Mathematical Sciences, Vol. 54, 3413-3442, 2003.
    doi:10.1155/S0161171203301486

    4. Engheta, N., "A note on fractional calculus and the image method for dielectric spheres," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 9, 1179-1188, 1995.

    5. Engheta, N., "Use of fractional integration to propose some ``fractional'' solutions for the scalar helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.

    6. Engheta, N., "Electrostatic fractional image methods for perfectly conducting wedges and cones," IEEE Transactions on Antennas and Propagation, Vol. 44, 1565-1574, 1996.
    doi:10.1109/8.546242

    7. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antennas and Propagation Magazine, Vol. 39, 35-46, 1997.
    doi:10.1109/74.632994

    8. Stillinger, F. H., "Axiomatic basis for spaces with non-integer dimension," Journal of Mathematical Physics, Vol. 18, No. 6, 1224-1234, 1977.
    doi:10.1063/1.523395

    9. Leibbrandt, G., "Introduction to the technique of dimensional regularization," Rev. Mod. Phys., Vol. 47, No. 4, 849-876, 1975.
    doi:10.1103/RevModPhys.47.849

    10. Wilson, K. G. and M. E. Fisher, "Critical exponents in 3.99 dimensions," Phys. Rev. Lett., Vol. 28, No. 4, 240-243, 1972.
    doi:10.1103/PhysRevLett.28.240

    11. He, X. F., "Anisotropy and isotropy: A model of fraction-dimensional space," Solid State Communications, Vol. 75, No. 2, 111-114, 1990.
    doi:10.1016/0038-1098(90)90352-C

    12. Tarasov, V. E., "Vector calculus in non-integer dimensional space and its applications to fractal media," Commun. Nonlinear Sci. Numer. Simul., Vol. 20, No. 2, 360-374, 2015.
    doi:10.1016/j.cnsns.2014.05.025

    13. Palmer, C. and P. N. Stavrinou, "Equations of motion in a non-integer dimension space," J. Phys. A, Vol. 37, 6987-7003, 2004.
    doi:10.1088/0305-4470/37/27/009

    14. He, X.-F., "Fractional dimensionality and fractional derivative spectra of interband optical transitions," Phys. Rev. B, Vol. 42, No. 18, 11751-11756, 1990.
    doi:10.1103/PhysRevB.42.11751

    15. He, X.-F., "Excitons in anisotropic solids: The model of fractional-dimensional space," Phys. Rev. B, Vol. 43, No. 3, 2063-2069, 1991.
    doi:10.1103/PhysRevB.43.2063

    16. Lohe, M. A. and A. Thilagam, "Quantum mechanical models in fractional dimensions," J. Phys. A, Vol. 37, No. 23, 61-81, 2004.
    doi:10.1088/0305-4470/37/23/015

    17. De Dios-Leyva, M., A. Bruno-Alfonso, A. Matos-Abiague, and L. E. Oliveira, "Fractional-dimensional space and applications in quantum-confined semiconducting heterostructures," J. Appl. Phys., Vol. 82, No. 6, 3155-3157, 1997.
    doi:10.1063/1.366267

    18. Matos-Abiague, A., "Free particle in fractional-dimensional space," Bulg. J. Phys., Vol. 27, No. 3, 54-57, 2000.

    19. Matos-Abiague, A., "Deformation of quantum mechanics in fractional-dimensional space," J. Phys. A, Vol. 34, No. 49, 11059-11068, 2001.
    doi:10.1088/0305-4470/34/49/321

    20. Matos-Abiague, A., "Bose-like oscillator in fractional-dimensional space," J. Phys. A, Vol. 34, No. 14, 3125-3138, 2001.
    doi:10.1088/0305-4470/34/14/317

    21. Eid, R., S. I. Muslih, D. Baleanu, and E. Rabei, "On fractional Schrodinger equation in-dimensional fractional space," Nonlinear Anal.: Real World Appl., Vol. 10, No. 3, 1299-1304, 2009.
    doi:10.1016/j.nonrwa.2008.01.007

    22. Muslih, S. I. and O. P. Agrawal, Schrodinger Equation in Fractional Space, in Fractional Dynamics and Control, D. Baleanu, J. A. Tenreiro Machado, and A. C. J. Luo (eds.), Chap. 17, 209-215, Springer, New York, 2012.

    23. Sandev, T., I. Petreska, and E. K. Lenzi, "Harmonic and anharmonic quantum-mechanical oscillators in noninteger dimensions," Phys. Lett. A, Vol. 378, No. 3, 109-116, 2013.
    doi:10.1016/j.physleta.2013.10.048

    24. Muslih, S. and D. Baleanu, "Fractional multi-poles in fractional space," Nonlinear Anal.: Real World Appl., Vol. 8, 198-203, 2007.
    doi:10.1016/j.nonrwa.2005.07.001

    25. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Anal.: Real World Appl., Vol. 11, No. 1, 288-292, 2010.
    doi:10.1016/j.nonrwa.2008.10.058

    26. Tarasov, V. E., "Electromagnetic fields on fractals," Modern Physics Letters A, Vol. 21, No. 20, 1587-1600, 2006.
    doi:10.1142/S0217732306020974

    27. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Anal.: Real World Appl., Vol. 11, No. 1, 288-292, 2010.
    doi:10.1016/j.nonrwa.2008.10.058

    28. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.
    doi:10.2528/PIER99051801

    29. Naqvi, Q. A., "Fractional dual interface in chiral nihility medium," Progress In Electromagnetics Research Letters, Vol. 8, 135-142, 2009.
    doi:10.2528/PIERL09032405

    30. Hussain, A., S. Ishfaq, and Q. A. Naqvi, "Fractional curl operator and fractional waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
    doi:10.2528/PIER06060604

    31. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space," Progress In Electromagnetics Research, Vol. 114, 255-269, 2011.
    doi:10.2528/PIER11011403

    32. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.
    doi:10.2528/PIERL10102103

    33. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "On electromagnetic wave propagation in fractional space," Nonlinear Anal.: Real World Appl., Vol. 12, No. 5, 2844-2850, 2011.
    doi:10.1016/j.nonrwa.2011.04.010

    34. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the spherical wave equation in D-dimensional fractional space," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1481-1491, 2011.

    35. Song, W. Z. and L. B. Wei, "The scattering of electromagnetic waves in fractal media," Waves in Random and Complex Media, Vol. 4, No. 1, 97-103, 1994.
    doi:10.1088/0959-7174/4/1/010

    36. Balanis, C. A., Advanced Engineering Electro-magnetics, Wiley, New York, 1989.

    37. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill Inc., New York, 1961.

    38. Omer, M. and M. J. Mughal, "Behavior of electromagnetic waves at dielectric fractal-fractal interface in fractional spaces," Progress In Electromagnetics Research M, Vol. 28, 229-244, 2013.
    doi:10.2528/PIERM12121903

    39. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
    doi:10.2528/PIER12012402

    40. Attiya, A. M., "Reflection and transmission of electromagnetic wave due to a quasi-fractional-space slab," Progress In Electromagnetics Research Letters, Vol. 24, 119-128, 2011.
    doi:10.2528/PIERL11051105

    41. Marwat, S. K. and M. J. Mughal, "Characteristics of multilayered metamaterial structures embedded in fractional space for tera-hertz applications," Progress In Electromagnetics Research, Vol. 144, 229-239, 2014.
    doi:10.2528/PIER13110603

    42. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, 1994.

    43. Cheng, Q. T., J. Cui, and C. Zhang, "Waves in planar waveguide containing chiral nihility metamaterial," Optics Communications, Vol. 276, 317-321, 2007.
    doi:10.1016/j.optcom.2007.04.053

    44. Chew, W. C., Waves and Fields in In-homogenous Media, Van Nostrand Reinhold, New York, 1990.

    45. Naqvi, A., A. Hussain, and Q. A. Naqvi, "Waves in fractional dual planar waveguides containing chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1575-1586, 2010.
    doi:10.1163/156939310792149614

    46. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 1, 90-98, 1990.
    doi:10.1109/8.43593

    47. Lakhtakia, A., Beltrami Fields in Chiral Media, World Scientific, Singapore, 1994.

    48. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Applied Physics, Vol. 18, 16-21, 1979.

    49. Bassiri, S., C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," Journal of Optical Society of America A, Vol. 5, 145-209, 1988.

    50. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, 1994.

    51. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, Time Harmonic Electromagnetic Fields in Chiral Media, Springer, Berlin, 1989.

    52. Zarifi, D., A. Abdolali, M. Soleimani, and M. V. Nayyeri, "Inhomogeneous planar layered chiral media: Analysis of wave propagation and scattering using Taylor's series expansion," Progress In Electromagnetics Research, Vol. 125, 119-135, 2012.
    doi:10.2528/PIER11122804

    53. Zarifi, D., M. Soleimani, and V. A. Nayyeri, "Novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 251-263, 2012.
    doi:10.1163/156939312800030767

    54. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
    doi:10.1163/156939303322226356

    55. Lakhtakia, A., "An electromagnetic trinity from negative permittivity and negative permeability," International Journal of Infrared and Millimeter Waves, Vol. 22, 173-214, 2001.

    56. Dong, J.-F., J. Li, and F.-Q. Yang, "Guided modes in the four-layer slab waveguide containing chiral nihility core," Progress In Electromagnetics Research, Vol. 112, 241-255, 2011.
    doi:10.2528/PIER10121608

    57. Rahim, A. A., M. J. Mughal, and Q. A. Naqvi, "Fractional rectangular waveguide internally coated with chiral nihility metamaterial," Progress In Electromagnetics Research M, Vol. 17, 197-211, 2011.
    doi:10.2528/PIERM10123010

    58. Naqvi, Q. A., "Planar slab of chiral nihility metamaterial backed by fractional DUAL/PEMC interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2009.

    59. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-352, 2010.
    doi:10.2528/PIER10030706

    60. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B.-I.Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.
    doi:10.2528/PIER09112002