Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-10-06

Dyadic Green's Functions for a Parallel Plate Waveguide Filled with Anisotropic Uniaxial Media

By Neil G. Rogers and Michael John Havrilla
Progress In Electromagnetics Research B, Vol. 63, 249-261, 2015
doi:10.2528/PIERB15061406

Abstract

The dyadic Green's functions for magnetic and electric currents immersed in a parallel plate waveguide (PPWG) filled with dielectric-magnetic anisotropic uniaxial media are developed via a field-based approach. First, the principal Green's function is derived from the forced wave equation for currents immersed in an unbounded uniaxial media. Next, the scattered Green's function is developed from the unforced wave equation. Finally, the total Green's function is found by superposition and subsequent application of the appropriate boundary conditions. The Green's functions are derived from Maxwell's equations, using a spectral domain analysis and reveals several key physical insights. First, the expected longitudinal depolarization dyads are observed. The expected depolarizing terms arise through careful application of complex-plane analysis, leading to expressions that are valid both internal and external to the source region. Secondly, the identification and decomposition of the total Green's function into TEz and TMz field contributions is demonstrated. Thirdly, the mathematical forms of the principal and total Green's functions are shown to be physically intuitive. The primary contribution of this research is the development of the Green's functions for a parallel plate waveguide containing a dielectric and magnetic uniaxial medium directly from Maxwell's equations. Prior derivations considered dielectric-only uniaxial media in a parallel-plate waveguide, due to the relative ease of analysis and readily available inverse identities found in \cite{Chen_1983}. Inclusion of magnetic uniaxial characteristics adds considerable complexity (since no simplifying identities are available) and provides additional insight into the field behavior, thus representing a significant contribution to the electromagnetic analysis of complex media. Finally, practical applications of the Green's functions are considered, such as the non-destructive electromagnetic characterization of a variety of anisotropic uniaxial media.

Citation


Neil G. Rogers and Michael John Havrilla, "Dyadic Green's Functions for a Parallel Plate Waveguide Filled with Anisotropic Uniaxial Media," Progress In Electromagnetics Research B, Vol. 63, 249-261, 2015.
doi:10.2528/PIERB15061406
http://www.jpier.org/PIERB/pier.php?paper=15061406

References


    1. Ali, S. M., T. M. Habashy, and J. A. Kong, "Spectral-domain Green's function in layered chiral media," JOSA A, Vol. 9, No. 3, 413-423, 1992.
    doi:10.1364/JOSAA.9.000413

    2. Bagby, J. S. and D. P. Nyquist, "Dyadic Green's functions for integrated electronic and optical circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 2, 207-210, 1987.
    doi:10.1109/TMTT.1987.1133625

    3. Balanis, C. A., Advanced Engineering Electromagnetics, Vol. 205, Wiley, New York, 1989.

    4. Ball, J. A. R. and P. J. Khan, "Source region electric field derivation by a dyadic Green’s function approach," IEE Proceedings H --- Microwaves, Optics and Antennas, Vol. 127, No. 5, 301-304, 1980.
    doi:10.1049/ip-h-1.1980.0063

    5. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive measurements of complex tensor permittivity of anisotropic materials using a waveguide probe system," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 7, 1081-1090, 1996.
    doi:10.1109/22.508641

    6. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive determination of electromagnetic parameters of dielectric materials at x-band frequencies using a waveguide probe system," IEEE Transactions on Instrumentation and Measurement, Vol. 46, No. 5, 1084-1092, 1997.
    doi:10.1109/19.676717

    7. Chen, H. C., Theory of Electromagnetic Waves: A Coordinate-free Approach, McGraw-Hill Book Company, 1983.

    8. Chen, K. M., "A simple physical picture of tensor Green’s function in source region," Proceedings of the IEEE, Vol. 65, No. 8, 1202-1204, 1977.
    doi:10.1109/PROC.1977.10669

    9. Chew, W. C., "Some observations on the spatial and eigenfunction representations of dyadic Green’s functions," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 10, 1322-1327, 1989.
    doi:10.1109/8.43544

    10. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

    11. De Visschere, P., Electromagnetic Source Transformations and Scalarization in Stratified Gyrotropic Media, ArXiv e-prints, June 2009.

    12. Dester, G. D., E. J. Rothwell, and M. J. Havrilla, "An extrapolation method for improving waveguide probe material characterization accuracy," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 5, 298-300, 2010.
    doi:10.1109/LMWC.2010.2045600

    13. Fikioris, J. G., "Electromagnetic field inside a current-carrying region," Journal of Mathematical Physics, Vol. 6, 1617, 1965.
    doi:10.1063/1.1704702

    14. Georgieva, N. K. and W. S. Weiglhofer, "Electromagnetic vector potentials and the scalarization of sources in a nonhomogeneous medium," Phys. Rev. E, Vol. 66, 046614, Oct. 2002.

    15. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill Electrical and Electronic Engineering Series, McGraw-Hill, 1961.

    16. Havrilla, M., "Electric and magnetic field dyadic Green’s functions and depolarizing dyad for a magnetic current immersed in a uniaxial dielectric-filled parallel plate waveguide," 2011 XXXth URSI General Assembly and Scientific Symposium, 1-4, 2011.
    doi:10.1109/URSIGASS.2011.6050349

    17. Havrilla, M. J., "Scalar potential depolarizing dyad artifact for a uniaxial medium," Progress In Electromagnetics Research, Vol. 134, 151-168, 2013.
    doi:10.2528/PIER12101214

    18. Hyde IV, M. W. and M. J. Havrilla, "A non-destructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
    doi:10.2528/PIER07102405

    19. Hyde, M. W., M. J. Havrilla, and A. E. Bogle, "A novel and simple technique for measuring low-loss materials using the two flanged waveguides measurement geometry," Measurement Science and Technology, Vol. 22, No. 8, 085704, 2011.
    doi:10.1088/0957-0233/22/8/085704

    20. Jakoby, B. and F. Olyslager, "Singularity in green dyadics for uniaxial bianisotropic media," Electronics Letters, Vol. 31, No. 10, 779-781, 1995.
    doi:10.1049/el:19950544

    21. Lindell, I. V. and F. Olyslager, "Potentials in bi-anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 3-18, 2001.
    doi:10.1163/156939301X00571

    22. Lindell, I. V., A. H. Sihvola, and S. Tretyakov, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Inc, Norwood, MA, 1994.

    23. Mackay, T. G. and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific Publishing Company Incorporated, 2010.

    24. Niu, M., Y. Su, J. Yan, C. Fu, and D. Xu, "An improved open-ended waveguide measurement technique on parameters εγ and μγ of high-loss materials," IEEE Transactions on Instrumentation and Measurement, Vol. 47, No. 2, 476-481, ID: 1, 1998.

    25. Przeziecki, S. and R. A. Hurd, "A note on scalar hertz potentials for gyrotropic media," Applied Physics, Vol. 20, No. 4, 313-317, 1979.
    doi:10.1007/BF00895002

    26. Seal, M. D., M. W. Hyde IV, and M. J. Havrilla, "Nondestructive complex permittivity and permeability extraction using a two-layer dual-waveguide probe measurement geometry," Progress In Electromagnetics Research, Vol. 123, 123-142, 2012.
    doi:10.2528/PIER11111108

    27. Stratton, J. A., Electromagnetic Theory, IEEE Press Series on Electromagnetic Wave Theory, Wiley, 2007.

    28. Van Bladel, J., "Some remarks on Green's dyadic for infinite space," IRE Transactions on Antennas and Propagation, Vol. 9, No. 6, 563-566, 1961.
    doi:10.1109/TAP.1961.1145064

    29. Viola, M. S. and D. P. Nyquist, "An observation on the Sommerfeld-integral representation of the electric dyadic Green's function for layered media," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 8, 1289-1292, 1988.
    doi:10.1109/22.3672

    30. Weiglhofer, W. S., "Scalarisation of Maxwell's equations in general inhomogeneous bianisotropic media," IEE Proceedings H --- Microwaves, Antennas and Propagation, Vol. 134, No. 4, 357-360, August 1987.
    doi:10.1049/ip-h-2.1987.0070

    31. Weiglhofer, W. S., "Frequency-dependent dyadic green functions for bianisotropic media," Advanced Electromagnetism: Foundations, Theory, Applications, 376-389, 1995.
    doi:10.1142/9789812831323_0013

    32. Weiglhofer, W. S., "Electromagnetic field in the source region: A review," Electromagnetics, Vol. 19, No. 6, 563-577, 1999.
    doi:10.1080/02726349908908674

    33. Weiglhofer, W. S., "Hertz potentials in complex medium electromagnetics,", Technical report, DTIC Document, 2000.
    doi:10.1080/02726349908908674

    34. Weiglhofer, W. S., Scalar Hertz Potentials for Linear Bianisotropic Mediums, John Wiley, 2000.

    35. Weiglhofer, W. S., "Scalar hertz potentials for nonhomogeneous uniaxial dielectric-magnetic mediums," International Journal of Applied Electromagnetics and Mechanics, Vol. 11, No. 3, 131-140, 2000.

    36. Weiglhofer, W. S. and S. O. Hansen, "Faraday chiral media revisited. I. Fields and sources," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 807-814, May 1999.
    doi:10.1109/8.774134

    37. Weiglhofer, W. S. and A. Lakhtakia, "Introduction to complex mediums for optics and electromagnetics," Society of Photo Optical, Vol. 123, 2003.

    38. Yaghjian, A. D., "Electric dyadic green’s functions in the source region," Proceedings of the IEEE, Vol. 68, No. 2, 248-263, 1980.
    doi:10.1109/PROC.1980.11620