Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-10-19

Computational Aspects of 2D-Quasi-Periodic-Green-Function Computations for Scattering by Dielectric Objects via Surface Integral Equations

By Pieter Jorna, Vito Lancellotti, and Martijn C. van Beurden
Progress In Electromagnetics Research B, Vol. 63, 49-66, 2015
doi:10.2528/PIERB15071703

Abstract

We describe a surface integral-equation (SIE) method suitable for computation of electromagnetic fields scattered by 2D-periodic high-permittivity and plasmonic scatterers. The method makes use of fast evaluation of the 2D-quasi-periodic Green function (2D-QPGF) and its gradient using a tabulation technique in combination with tri-linear interpolation. In particular we present a very efficient technique to create the look-up tables for the 2D-QPGF and its gradient where we use to our advantage that it is very effective to simultaneously compute the QPGF and its gradient, and to simultaneously compute these values for the case in which the role of source and observation point are interchanged. We use the Ewald representation of the 2D-QPGF and its gradient to construct the tables with pre-computed values. Usually the expressions for the Ewald representation of the 2D-QPGF and its gradient are presented in terms of the complex complementary error function but here we give the expressions in terms of the Faddeeva function enabling efficient use of the dedicated algorithms to compute the Faddeeva function. Expressions are given for both lossy and lossless medium parameters and it is shown that the expression for the lossless case can be evaluated twice as fast as the expression for the lossy case. Two case studies are presented to validate the proposed method and to show that the time required for computing the method of moments (MoM) integrals that require evaluation of the 2D-QPGF becomes comparable to the time required for computing the MoM integrals that require evaluation of the aperiodic Green function.

Citation


Pieter Jorna, Vito Lancellotti, and Martijn C. van Beurden, "Computational Aspects of 2D-Quasi-Periodic-Green-Function Computations for Scattering by Dielectric Objects via Surface Integral Equations," Progress In Electromagnetics Research B, Vol. 63, 49-66, 2015.
doi:10.2528/PIERB15071703
http://www.jpier.org/PIERB/pier.php?paper=15071703

References


    1. Kobidze, G., B. Shanker, and D. P. Nyquist, "Efficient integral-equation-based method for accurate analysis of scattering from periodically arranged nanostructures," Physical Review E, Vol. 72, No. 5, 056702, Nov. 2005.
    doi:10.1103/PhysRevE.72.056702

    2. Solís, D. M., M. G. Araújo, L. Landesa, S. García, J. M. Taboada, and F. Obelleiro, "MLFMA-MoM for solving the scattering of densely packed plasmonic nanoparticle assemblies," IEEE Photonics Journal, Vol. 7, No. 3, 4800709, Jun. 2015.
    doi:10.1109/JPHOT.2015.2423283

    3. Valerio, G., P. Baccarelli, S. Paulotto, F. Frezza, and A. Galli, "Regularization of mixed-potential layered-media Green's functions for efficient interpolation procedures in planar periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 122-134, Jan. 2009.
    doi:10.1109/TAP.2008.2009695

    4. Celepcikay, F. T., D. R. Wilton, and D. R. Jackson, "Interpolation of 2D layered-medium periodic Green's function," Antennas and Propagation Society International Symposium (APSURSI), Toronto, Jul. 11-17, 2010.

    5. Wilton, D. R., D. R. Jackson, and F. T. Celepcikay, "Efficient computation of periodic, layered media Green's functions," 6th European Conference on Antennas and Propagation (EuCAP 2012), Prague, Mar. 26-30, 2012.

    6. Celepcikay, F. T., "Efficient calculation of layered-medium periodic Green's function,", PhD Thesis, University of Houston, Houston, Texas, Aug. 2010.

    7. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
    doi:10.2528/PIER04071301

    8. Solís, D. M., J. M. Taboada, and F. Obelleiro, "Surface integral equation-method of moments with multiregion basis functions applied to plasmonics," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2141-2152, May 2015.
    doi:10.1109/TAP.2015.2406891

    9. Dardenne, X. and C. Craeye, "Method of moments simulation of infinitely periodic structures combining metal with connected dielectric objects," IEEE Transations on Antennas and Propagation, Vol. 56, No. 8, 2372-2380, Aug. 2008.
    doi:10.1109/TAP.2008.926779

    10. Gallinet, B., A. M. Kern, and O. J. F. Martin, "Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach," Journal of the Optical Society of America A, Optics and Image Science, Vol. 27, No. 10, 2261-2271, Oct. 2010.
    doi:10.1364/JOSAA.27.002261

    11. Jorna, P., V. Lancelotti, and M. C. van Beurden, "Formulation and implementation of boundary integral equations for scattering by doubly periodic plasmonic and dielectric structures of infinite lateral extent," International Conference on Electromagnetics in Advanced Applications (ICEAA), 1423-1426, Torino, Sep. 7-11, 2015.

    12. Ewald, P. P., "Die berechnung optischer und elektrostatischer gitterpotentiale," Annalen der Physik IV, Vol. 64, 253-287, 1921.
    doi:10.1002/andp.19213690304

    13. Jordan, K. E., G. R. Richter, and P. Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," Journal of Computational Physics, Vol. 63, No. 1, 222-235, Mar. 1986.
    doi:10.1016/0021-9991(86)90093-8

    14. Kambe, K., "Theory of electron diffraction by crystals, I. Green's function and integral equation," Z. Naturforschg., Vol. 22a, 422-431, 1967.

    15. Stevanović, I., P. Crespo-Valero, K. Blagović, F. Bongard, and J. R. Mosig, "Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 10, 3688-3697, Oct. 2006.
    doi:10.1109/TMTT.2006.882876

    16. Li, S., D. A. van Orden, and V. Lomakin, "Fast periodic interpolation method for periodic unit cell problems," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 4005-4014, Dec. 2010.
    doi:10.1109/TAP.2010.2078480

    17. Shi, Y. and C. H. Chan, "Multilevel Green's function interpolation method for analysis of 3-D frequency selective structures using volume/surface integral equation," Journal of the Optical Society of America A, Optics and Image Science, Vol. 27, No. 2, 308-318, 2010.
    doi:10.1364/JOSAA.27.000308

    18. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three dimensional scattering problems," Computer Techniques for Electromagnetics, R. Mittra, editor, Pergamon Press, Elmsford, New York, 1973.

    19. Chang, Y. and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 6, 789-795, Jun. 1977.
    doi:10.1109/TAP.1977.1141685

    20. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Science, Vol. 12, No. 5, 709-718, 1977.
    doi:10.1029/RS012i005p00709

    21. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE Press, 1993.
    doi:10.1109/9780470544631

    22. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, May 1982.
    doi:10.1109/TAP.1982.1142818

    23. Kustepeli, A. and A. Q. Martin, "On the splitting parameter in the Ewald method," IEEE Transactions on Microwave and Guided Wave Letters, Vol. 10, No. 5, 168-170, May 2000.
    doi:10.1109/75.850366

    24. Oroskar, S., D. R. Jackson, and D. R. Wilton, "Efficient computation of the 2D periodic Green's function using the Ewald method," Journal of Computational Physics, Vol. 219, No. 2, 899-911, Dec. 2006.
    doi:10.1016/j.jcp.2006.06.050

    25. Celepcikay, F. T., D. R. Wilton, D. R. Jackson, and F. Capolino, "Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green's functions using the Ewald method," Radio Science, Vol. 43, RS6S01, Sep. 2008.

    26. Stevanović, I. and J. R. Mosig, "Green's function for planar structures in periodic skewed 2-D lattices using Ewald transformation," 1st European Conference on Antennas and Propagation (EuCAP 2006), Nice, France, Nov. 6-10, 2006.

    27. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1965.

    28. Gautschi, W., "Efficient computation of the complex error function," SIAM J. Numer. Anal., Vol. 7, No. 1, 187-198, Mar. 1970.
    doi:10.1137/0707012

    29. Poppe, G. P. M. and C. M. J. Wijers, "More efficient computation of the complex error function," ACM Transactions on Mathematical Software, Vol. 16, No. 1, 38-46, Mar. 1990.
    doi:10.1145/77626.77629

    30. Zaghloul, M. R. and A. N. Ali, "Algorithm 916: Computing the Faddeyeva and Voigt functions," ACM Transactions on Mathematical Software, Vol. 38, No. 2, 1-22, Dec. 2011.
    doi:10.1145/2049673.2049679

    31. Van Beurden, M. C., "A spectral volume integral equation method for arbitrary bi-periodic gratings with explicit Fourier factorization," Progress In Electromagnetics Research B, Vol. 36, 133-149, 2012.
    doi:10.2528/PIERB11100307

    32. Van Beurden, M. C., "Fast convergence with spectral volume integral equation for crossed block-shaped gratings with improved material interface conditions," Journal of the Optical Society of America A, Vol. 28, No. 11, 2269-2278, 2011.
    doi:10.1364/JOSAA.28.002269

    33. Jorna, P., V. Lancelotti, and M. C. van Beurden, "SIE approach to scattered field computation for 2D periodic diffraction gratings in 3D space consisting of high permittivity dielectric materials and plasmonic scatterers," International Conference on Electromagnetics in Advanced Applications (ICEAA), 143-146, Aruba, Aug. 3-9, 2014.

    34. Van Kraaij, M. G. M. M., "Forward diffraction modelling: analysis and application to grating reconstruction,", PhD thesis, Eindhoven University of Technology, Mar. 2011.