Vol. 63

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-09-24

A Hybrid Multichannel Processing Method for Spaceborne Hybrid Phased-MIMO SAR with Application to Multi-Direction Swath Imaging

By Lele Zhang and Dianren Chen
Progress In Electromagnetics Research B, Vol. 63, 233-247, 2015
doi:10.2528/PIERB15072705

Abstract

This paper proposes a hybrid multichannel processing method for spaceborne Hybrid Phased-MIMO SAR (HPMSAR) that can achieve different applications of multi-direction swath imaging on the same platform. The method is optimal because it is a combination of two-dimension (2-D) advanced digital beamforming (DBF) technology and multichannel pre-filter technology for high-resolution wide-swath SAR signal processing. Multichannel signal processing technology for future spaceborne SAR will no longer be single and this combination may be the best choice. The proposed method could avoid spectrum aliasing caused by low pulse repetition frequency (PRF), separate the overlapped echoes caused by different subpulses corresponding to multi-direction swathes and remove the range ambiguity and azimuth ambiguity deeply. At first, we build the signal model of HPMSAR system. Furthermore, the pre-filter design is presented by using matrix inversion method. Then, we address different methods applied to 2-D DBF and propose the advanced linearly constrained minimum variance (LCMV) method. Image results on simulated distributed targets validate the proposed hybrid multichannel processing method.

Citation


Lele Zhang and Dianren Chen, "A Hybrid Multichannel Processing Method for Spaceborne Hybrid Phased-MIMO SAR with Application to Multi-Direction Swath Imaging," Progress In Electromagnetics Research B, Vol. 63, 233-247, 2015.
doi:10.2528/PIERB15072705
http://www.jpier.org/PIERB/pier.php?paper=15072705

References


    1. Krieger, G., N. Gebert, and A. Moreira, "Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling," IEEE Geosci. Remote Sens. Lett., Vol. 1, No. 4, 260-264, 2004.
    doi:10.1109/LGRS.2004.832700

    2. Krieger, G., N. Gebert, and A. Moreira, "Multidimensional radar waveforms," Geoscience and Remote Sensing Symposium, 4937-4941, Barcelona, 2007.

    3. Krieger, G., N. Gebert, and A. Moreira, "Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 1, 31-46, 2008.
    doi:10.1109/TGRS.2007.905974

    4. De Zan, F. and A. M. Guarnieri, "TOPSAR: Terrain observation by progressive scans," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 9, 2352-2360, 2006.
    doi:10.1109/TGRS.2006.873853

    5. Meta, A., et al., "TOPS imaging with TerraSAR-X: Mode design and performance analysis," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 2, 759-769, 2010.
    doi:10.1109/TGRS.2009.2026743

    6. Gebert, N., G. Krieger, and A. Moreira, "Multichannel azimuth processing in scanSAR and TOPS mode operation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 7, 2994-3008, 2010.
    doi:10.1109/TGRS.2010.2041356

    7. Wollstadt, S., et al., "Bidirectional SAR imaging mode," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 601-614, 2013.
    doi:10.1109/TGRS.2012.2202669

    8. Suchandt, S., H. Runge, H. Breit, U. Steinbrecher, A. Kotenkov, and U. Balss, "Automatic extraction of tra±c °ows using TerraSAR-X alongtrack interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 2, 807-819, 2010.
    doi:10.1109/TGRS.2009.2037919

    9. Perissin, D. and A. Ferretti, "Urban-target recognition by means of repeated spaceborne SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 12, 4043-4058, 2007.
    doi:10.1109/TGRS.2007.906092

    10. Chang, Y.-L., C.-Y. Chiang, and K. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
    doi:10.2528/PIER11061507

    11. Zhang, L. and D. Chen, "Digital beamforming on receive in elevation for spaceborne hybrid phased-MIMO SAR," Progress In Electromagnetics Research M, Vol. 40, 153-166, 2014.
    doi:10.2528/PIERM14111303

    12. Hassanien, A. and S. A. Vorobyov, "Phased-MIMO radar: A tradeo® between phased-array and MIMO radars," IEEE Transactions on Signal Processing, Vol. 58, No. 6, 1-33, 2010.
    doi:10.1109/TSP.2010.2043976

    13. Fuhrmann, D. R., J. Paul Browning, and M. Rangaswamy, "Signaling strategies for the hybrid MIMO phased-array radar," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 1, 66-78, 2010.
    doi:10.1109/JSTSP.2009.2038968

    14. Ludwig, M., C. H. Buck, F. Coromina, and M. Suess, "Status and trends for space-borne phased array radar (INVITED)," IEEE MTT-S International Microwave Symposium Digest, 2005.

    15. Huber, S., et al., "Digital beam forming concepts with application to spaceborne reflector SAR systems," International Radar Symposium (IRS), 1-4, 2010.

    16. Feng, F., S. Li, W. Yu, P. Huang, and W. Xu, "Echo separation in multidimensional waveform encoding SAR remote sensing using an advanced null-steering beamformer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 10, 4157-4171, 2012.
    doi:10.1109/TGRS.2012.2187905

    17. Krieger, G., et al., "Digital beamforming and MIMO SAR: Review and new concepts," Synthetic Aperture Radar, 11-14, 2012.

    18. Younis, M., et al., "Performance comparison of reflector- and planar-antenna based digital beam-forming SAR," International Journal of Antennas and Propagation, 1-13, 2009.
    doi:10.1155/2009/614931

    19. Bucci, O. M., T. Isernia, and A. F. Morabito, "An effective deterministic procedure for the synthesis of shaped beams by means of uniform-amplitude linear sparse arrays," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 169-175, 2013.
    doi:10.1109/TAP.2012.2219844

    20. Gebert, N., G. Krieger, and A. Moreir, "Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging," IEEE Transactions on Aerospace and Electronic System, Vol. 45, No. 2, 564-592, 2009.
    doi:10.1109/TAES.2009.5089542

    21. Brown, J., "Multi-channel sampling of low-pass signals," IEEE Trans. Circuits Syst., Vol. 28, No. 2, 101-106, 1981.
    doi:10.1109/TCS.1981.1084954

    22. Trees, H. L. V., Optimum Array Processing, Wiley, Hoboken, NJ, 2002.
    doi:10.1002/0471221104

    23. Capon, J., "High-resolution frequency-wavenumber spectrum analysis," Proceedings of the IEEE, Vol. 57, No. 8, 1408-1418, 1969.
    doi:10.1109/PROC.1969.7278

    24. Tseng, C.-Y. and L. J. Griffiths, "A simple algorithm to achieve desired patterns for arbitrary arrays," IEEE Transactions on Signal Processing, Vol. 40, No. 11, 2737-2746, 1992.
    doi:10.1109/78.165660

    25. Wang, F., R. Yang, and C. Frank, "A new algorithm for array pattern synthesis using the recursive least squares method," IEEE Signal Processing Letters, Vol. 10, No. 8, 235-238, 2003.
    doi:10.1109/LSP.2003.814398

    26. Tseng, C.-Y., "Minimum variance beamforming with phase-independent derivative constraints," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 3, 285-294, 1992.
    doi:10.1109/8.135471

    27. Carlson, B. D., "Covariance matrix estimation errors and diagonal loading in adaptive arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, No. 4, 397-401, 1988.
    doi:10.1109/7.7181