Vol. 65

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-12-17

PSO Algorithm of Retrieving Surface Ducts by Doppler Weather Radar Echoes

By Junwang Li, Hong-Guang Wang, Zhen-Sen Wu, and Lei Li
Progress In Electromagnetics Research B, Vol. 65, 19-33, 2016
doi:10.2528/PIERB15082104

Abstract

Doppler weather radar is an effective tool for monitoring mesoscale and small scale weather systems, quantitatively estimating precipitation and guarding against severe convective weather. The quality of the data obtained by Doppler weather radar will be seriously affected by the anomalous propagation of electromagnetic wave in tropospheric ducts. A novel method is introduced in this paper to retrieve the surface ducts, and it is based on the Principal Component Analysis (PCA) method for modeling M profile and Parabolic Equation (PE) propagation model which is a well-established technique for efficiently solving the equations for beam propagation in an inhomogeneous atmosphere. The inversion echo powers and equivalent reflectivity factor are in accordance with the measured data, which indicates that the surface ducts can be effectively retrieved by this method.

Citation


Junwang Li, Hong-Guang Wang, Zhen-Sen Wu, and Lei Li, "PSO Algorithm of Retrieving Surface Ducts by Doppler Weather Radar Echoes," Progress In Electromagnetics Research B, Vol. 65, 19-33, 2016.
doi:10.2528/PIERB15082104
http://www.jpier.org/PIERB/pier.php?paper=15082104

References


    1. Bech, J., B. Codina, and J. Lorente, "Forecasting weather radar propagation conditions," Meteorology and Atmospheric Physics, Vol. 96, No. 3-4, 229-243, 2007.
    doi:10.1007/s00703-006-0211-x

    2. Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. Stumpf, "An automated technique to quality control radar reflectivity data," Journal of Applied Meteorology and Climatology, Vol. 46, No. 3, 288-305, 2007.
    doi:10.1175/JAM2460.1

    3. LeFurjah, G., R. Marshall, T. S. Casey, T. Haack, and D. De Forest Boyer, "Synthesis of mesoscale numerical weather prediction and empirical site-specific radar clutter models," IET Radar, Sonar and Navigation, Vol. 4, No. 6, 747-754, 2010.
    doi:10.1049/iet-rsn.2009.0145

    4. Park, S. and F. Fabry, "Estimation of near-ground propagation conditions using radar ground echo coverage," Journal of Atmospheric and Oceanic Technology, Vol. 28, No. 2, 165-180, 2011.
    doi:10.1175/2010JTECHA1500.1

    5. Rico-Ramirez, M. A. and I. D. Cluckie, "Classification of ground clutter and anomalous propagation using dual-polarization weather radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, 1892-1904, 2008.
    doi:10.1109/TGRS.2008.916979

    6. Jiang, Y., L.-P. Liu, and W. Zhuang, "Statistical characteristics of clutter and improvements of ground clutter identification technique with doppler weather radar," Journal of Applied Meteorological Science, Vol. 20, No. 2, 203-213, 2009.

    7. Qin, J., R.-B. Wu, Z.-G. Su, and X.-G. Lu, "Ground clutter suppression in airborne weather radar via terrain visibility analysis," Journal of Electronics & Information Technology, Vol. 34, No. 2, 351-355, 2012.

    8. Villarini, G. and W. F. Krajewski, "Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall," Surveys in Geophysics, Vol. 31, No. 1, 107-129, 2010.
    doi:10.1007/s10712-009-9079-x

    9. Bech, J., U. Gjertsenb, and G. Haasec, "Modelling weather radar beam propagation and topographical blockage at northern high latitudes," Quarterly Journal of the Royal Meteorological Society, Vol. 133, No. 626A, 1191-1204, 2007.
    doi:10.1002/qj.98

    10. Roy Bhowmik, S. K., et al., "Processing of Indian Doppler Weather Radar data for mesoscale applications," Meteorology and Atmospheric Physics, Vol. 111, No. 3-4, 133-147, 2011.
    doi:10.1007/s00703-010-0120-x

    11. Charalampidis, D., T. Kasparis, and W. L. Jones, "Removal of nonprecipitation echoes in weather radar using multifractals and intensity," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 5, 1121-1131, 2002.
    doi:10.1109/TGRS.2002.1010899

    12. Chen, C.-N., J.-L. Wang, C.-M. Chu, and F.-C. Lu, "Ray-trace of an abnormal radar echo using geographic information system," Defence Science Journal, Vol. 59, No. 1, 63-72, 2009.
    doi:10.14429/dsj.59.1487

    13. Chang, P.-L. and P.-F. Lin, "Radar anomalous propagation associated with foehn winds induced by Typhoon Krosa (2007)," Journal of Applied Meteorology and Climatology, Vol. 50, No. 7, 1527-1542, 2011.
    doi:10.1175/2011JAMC2619.1

    14. Cho, J. Y. N. and E. S. Chornoboy, "Multi-PRI signal processing for the terminal doppler weather radar. Part I: Clutter filtering," Journal of Atmospheric and Oceanic Technology, Vol. 22, No. 5, 575-582, 2005.
    doi:10.1175/JTECH1730.1

    15. Da Silveira, R. B. and A. R. Holt, "An automatic identification of clutter and anomalous propagation in polarization-diversity weather radar data using neural networks," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 8, 1777-1788, 2001.
    doi:10.1109/36.942556

    16. Fornasiero, A., P. P. Alberoni, and J. Bech, "Statistical analysis and modelling of weather radar beam propagation conditions in the Po Valley (Italy)," Natural Hazards and Earth System Sciences, Vol. 6, No. 2, 303-314, 2006.
    doi:10.5194/nhess-6-303-2006

    17. Fornasiero, A., J. Bech, and P. P. Alberoni, "Enhanced radar precipitation estimates using a combined clutter and beam blockage correction technique," Natural Hazards and Earth System Sciences, Vol. 6, No. 5, 697-710, 2006.
    doi:10.5194/nhess-6-697-2006

    18. Hubbert, J. C., M. Dixon, and S. M. Ellis, "Weather radar ground clutter. Part II: Real-time identification and filtering," Journal of Atmospheric and Oceanic Technology, Vol. 26, No. 7, 1181-1197, 2009.
    doi:10.1175/2009JTECHA1160.1

    19. Grecu, M. and W. F. Krajewski, "Detection of anomalous propagation echoes in weather radar data using neural networks," IEEE Tran. Geosc. Remote Sens., Vol. 37, 287-296, 1999.
    doi:10.1109/36.739163

    20. Grecu, M. and W. F. Krajewski, "An efficient methodology for detection of anomalous propagation echoes in radar reflectivity data using neural networks," J. Atmos Oceanic Technol., Vol. 17, 121-129, 2000.
    doi:10.1175/1520-0426(2000)017<0121:AEMFDO>2.0.CO;2

    21. Moszkowicz, S., G. J. Ciach, and W. F. Krajewski, "Statistical detection of anomalous propagation in radar reflectivity patterns," Journal of Atmospheric and Oceanic Technology, Vol. 11, No. 4, 1026-1034, 1994.
    doi:10.1175/1520-0426(1994)011<1026:SDOAPI>2.0.CO;2

    22. Zhao, R. J. and G. L. Wen, "Analysis on the two cases of atmospheric duct and CINRAD/SA super-refraction echoes," Scientia Meteorologica Sinica, Vol. 30, No. 3, 393-401, 2010.

    23. Berenguer, M., et al., "A fuzzy logic technique for identifying nonprecipitating echoes in radar scans," Journal of Atmospheric and Oceanic Technology, Vol. 23, No. 9, 1157-1180, 2006.
    doi:10.1175/JTECH1914.1

    24. Zhang, J.-P., "Methods of retrieving tropospheric ducts above ocean surface using radar sea clutter and GPS signals,", Xidian University, Xi'an, 2012.

    25. Tabrikian, J. and J. L. Krolik, "Theoretical performance limits on tropospheric refractivity estimation using point-to-point microwave measurements," IEEE Trans. Antennas Propag., Vol. 47, No. 11, 1727-1734, 1999.
    doi:10.1109/8.814953

    26. Barrios, A., "Estimation of surface-based duct parameters from surface clutter using a ray trace approach," Radio Sci., Vol. 39, RS6013, 2004.

    27. Sengupta, N. and I. A. Glover, "Refractivity and humidity profiling using wind profiler and microwave radiometer observations for the inference of radio ducts," Proc. of URSI General Assembly, New Delhi, India, 2005.

    28. Valtr, P. and P. Pechac, "Novel method of vertical refractivity profile estimation using angle of arrival spectra," Proc. of 28th General Assembly of International Union of Radio Science, New Delhi, India, 2005.

    29. Cheong, B. L., et al., "Refractivity retrieval using the phased-array radar: first results and potential for multimission operation," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 9, 2527-2537, 2008.
    doi:10.1109/TGRS.2008.919506

    30. Park, S. and F. Fabry, "Estimation of near-ground propagation conditions using radar ground echo coverage," J. Atmos. Oceanic Technol., Vol. 28, No. 2, 165-180, 2011.
    doi:10.1175/2010JTECHA1500.1

    31. Wang, H.-G., "Method and experiment of tropospheric ducts inversion using ground-based GNSS occultation,", Xidian University, Xi'an, 2013.

    32. Wang, B., "Method and experiment of tropospheric ducts inversion using radar sea clutter and GNSS,", Xidian University, Xi'an, 2011.
    doi:10.1175/2010JTECHA1500.1

    33. Lakshmanan, V., et al., "A statistical approach to mitigating persistent clutter in radar reflectivity data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, No. 2, 652-662, 2012.
    doi:10.1109/JSTARS.2011.2181828

    34. Delrieu, G., S. Caoudal, and J. D. Creutin, "Feasibility of using mountain return for the correction of ground-based X-band weather radar data," J. Atmos. Ocean Tech., Vol. 14, 368-385, 1997.
    doi:10.1175/1520-0426(1997)014<0368:FOUMRF>2.0.CO;2

    35. Cheong, B. L. and R. D. Palmer, "A time series weather radar simulator based on high-resolution atmospheric models," Journal of Atmospheric and Oceanic Technology, Vol. 25, No. 2, 230-243, 2008.
    doi:10.1175/2007JTECHA923.1

    36. Dutta, D., et al., "An artificial neural network based approach for estimation of rain intensity from spectral moments of a doppler weather radar," Advances in Space Research, Vol. 47, No. 11, 1949-1957, 2011.
    doi:10.1016/j.asr.2011.02.002

    37. Krajewski, W. F. and B. Vignal, "Evaluation of anomalous propagation echo detection in WSR-88D data: A large sample case study," Journal of Atmospheric and Oceanic Technology, Vol. 18, No. 5, 807-814, 2001.
    doi:10.1175/1520-0426(2001)018<0807:EOAPED>2.0.CO;2

    38. Mesnard, F. and H. Sauvageot, "Climatology of anomalous propagation radar echoes in a coastal area," Journal of Applied Meteorology and Climatology, Vol. 49, No. 11, 2285-2300, 2010.
    doi:10.1175/2010JAMC2440.1

    39. Pamment, J. A. and B. J. Conway, "Objective identification of echoes due to anomalous propagation in weather radar data," Journal of Atmospheric and Oceanic Technology, Vol. 15, No. 1, 98-113, 1998.
    doi:10.1175/1520-0426(1998)015<0098:OIOEDT>2.0.CO;2

    40. Seo, B.-C., W. F. Krajewski, A. Kruger, P. Domaszczynski, and J. A. Smith, "Matthias steiner," Journal of Hydroinformatics, Vol. 13, No. 2, 277-291, 2011.
    doi:10.2166/hydro.2010.003

    41. Sheikh, A. U. H., P. Z. Khan, and S. A. Al-Semari, "A study of anomalous propagation in persian gulf," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2029-2036, 2010.
    doi:10.1109/TAP.2010.2044336

    42. Villarini, G. and W. F. Krajewski, "Sensitivity studies of the models of radar-rainfall uncertainties," Journal of Applied Meteorology and Climatology, Vol. 49, No. 2, 288-309, 2010.
    doi:10.1175/2009JAMC2188.1

    43. Zhuang, X., S. Hu, F. Xu, D. Hu, and Q. Liang, "Application of an automated algorithm to remove anomalous propagation ground returns in nowcasting," Scientia Meteorologlca Sinica, Vol. 29, No. 2, 241-245, 2009.

    44. Bebbington, D., S. Rae, J. Bech, B. Codina, and M. Picanyol, "Modelling of weather radar echoes from anomalous propagation using a hybrid parabolic equation method and NWP model data," Natural Hazards and Earth System Sciences, Vol. 7, No. 3, 391-398, 2007.
    doi:10.5194/nhess-7-391-2007

    45. Bech, J., B. Codina, J. Lorente, and D. Bebbington, "The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient," Journal of Atmospheric and Oceanic Technology, Vol. 20, No. 6, 845-855, 2003.
    doi:10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2

    46. Karimian, A., C. Yardim, P. Gerstoft, W. S. Hodgkiss, and A. E. Barrios, "Refractivity estimation from sea clutter: An invited review," Radio Science, Vol. 46, 2011.
    doi:10.1029/2011RS004818

    47. Zhang, J.-P., "Methods of retrieving tropospheric ducts above ocean surface using radar sea clutter and GPS signals,", Xidian University, Xi'an, 2012.

    48. Yang, C., L.-X. Guo, H.-Q. Li, and Z.-S. Wu, "Study the propagation characteristic of radio wave in atmospheric duct," Journal of Xidian University, Vol. 36, No. 6, 1097-1102, 2009.

    49. Dong, C., L. Li, and Z.-S. Wu, "The analysis on offshore atmospheric duct with parabolic equation method," Electronic Sci. & Tech., Vol. 23, No. 11, 91-93, 99, 2010.

    50. Zheng, Q., X.-W. Gong, and W.-H. Wu, "On application of particle filter combining with particle swarm optimization to refractivity estimation from radar clutter," Journal of PLA University of Science and Technology (Natural Science Edition), Vol. 14, No. 3, 322-328, 2013.

    51. Yao, J.-S. and S.-X. Yang, "Practical application of the Paulus-Jeske (PJ) model to the littoral," Fire Control & Command Control, Vol. 35, No. 6, 121-124, 2010.

    52. Lu, J.-Q., "Research of modeling and simulation of radar echo signal,", The PLA Information Engineering University, Zhengzhou, 2006.

    53. Wang, H.-G., H. Zhang, and Z.-S. Wu, "Study of simulating anomalous ground echoes for doppler weather radar," Journal of Electronics & Information Technology, Vol. 35, No. 12, 2863-2867, 2013.
    doi:10.3724/SP.J.1146.2012.01541

    54. Xi, X.-Y. and H. Liu, "Research on comparison of principal component analysis with independent component analysis," Geophysical Prospecting For Petroleum, Vol. 45, No. 5, 441-446, 2006.

    55. Wang, H.-G., "Method and experiment of tropospheric ducts inversion using ground-based GNSS occultation,", Xidian University, Xi'an, 2013.

    56. Pan, F., Q. Zhou W.-X., Li, and Q. Gao, "Analysis of standard particle swarm optimization algorithm based on Markov chain," Acta Automatica Sinica, Vol. 39, No. 4, 381-389, 2013.
    doi:10.1016/S1874-1029(13)60037-3

    57. Ren, Z.-H., J. Wang, and Y.-L. Gao, "The global convergence analysis of particle swarm optimization algorithm based on Markov chain," Control Therory & Applications, Vol. 28, No. 4, 462-466, 2011.

    58. Guo, H.-K., J. Wu, Z.-F. Ying, and X. Lu, "A special kind of random sequences' improved Markov chain modeling," Academic Conference of the Sixteenth National Youth Communication, 2011.

    59. Zhao, J.-F. and X.-H. Chen, "Dual optimization of seismic attributes based on principle component analysis and K-L transform," Geophysical & Geochemical Exploration, Vol. 29, No. 3, 253-256, 2005.

    60. Levy, M., Parabolic Equation Methods for Electromagnetic Wave Propagation, Institution of Electrical Engineers, London, 2000.
    doi:10.1049/PBEW045E

    61. Wang, H.-G., J. Han, B. Wang, and Z.-S. Wu, "Numerical modeling of atmospheric environment for microwave propagation loss prediction over the sea surface," Systems Engineering and Electronics, Vol. 34, No. 3, 457-461, 2012.