Vol. 66

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-02-23

First Principles Cable Braid Electromagnetic Penetration Model

By Larry Kevin Warne, William L. Langston, Lorena I. Basilio, and William A. Johnson
Progress In Electromagnetics Research B, Vol. 66, 63-89, 2016
doi:10.2528/PIERB15121806

Abstract

The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

Citation


Larry Kevin Warne, William L. Langston, Lorena I. Basilio, and William A. Johnson, "First Principles Cable Braid Electromagnetic Penetration Model," Progress In Electromagnetics Research B, Vol. 66, 63-89, 2016.
doi:10.2528/PIERB15121806
http://www.jpier.org/PIERB/pier.php?paper=15121806

References


    1. Schelkunoff, S. A., "The electromagnetic theory of coaxial transmission lines and cylindrical shields," Bell System Technical Journal, Vol. 13, 532-579, 1934.
    doi:10.1002/j.1538-7305.1934.tb00679.x

    2. Kaden, H., Wirbelstrome und Schirmung in der Nachrichtentechnik, Springer-Verlag, Berlin, 1959.
    doi:10.1007/978-3-540-32570-3

    3. Krugel, L., "Abschirmwirkung von aussenleitern flexibler koaxialkabel," Telefnken-Zeitung, Vol. 29, No. 114, 256-266, Dec. 1956.

    4. Vance, E. F., Coupling to Shielded Cables, R. E. Krieger, 1987.

    5. Lee, K. S. H., EMP Interaction: Principles, Techniques, and Reference Data, Hemisphere Publishing Corp., Washington, 1986.

    6. Tyni, M., "The transfer impedance of coaxial cables with braided outer conductor,", 410-419, FV. Nauk, Inst. Telekomum Akust. Politech Wroclaw, Ser. Konfi, 1975.

    7. Sali, S., "An improved model for the transfer impedance calculations of braided coaxial cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 33, No. 2, 139-143, May 1991.
    doi:10.1109/15.78351

    8. Zhou, G. and L. Gong, "An improved analytic model for braided cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, No. 2, 161-163, May 1990.
    doi:10.1109/15.52412

    9. Kley, T., "Optimized single-braided cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, No. 1, 1-9, Feb. 1993.
    doi:10.1109/15.249390

    10. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley & Sons, Inc., New York, 1997.

    11. Latham, R. W., Small holes in cable shields, AFWL Interaction Note 118, Sep. 1972.

    12. Hudson, H. G., S. L. Stronach, W. Derr, W. A. Johnson, L. K. Warne, and R. E. Jorgenson, Cable test system upgrade --- Coaxial cable/connector model validation experiments, Internal Sandia Test Report, FY2000/2001.

    13. Smythe, W. R., Static and Dynamic Electricity, 76-78, Hemisphere Pub. Corp., New York, 1989.

    14. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, 366, Academic Pr., New York, 1965.

    15. Warne, L. K., K. O. Merewether, and W. A. Johnson, Approximations to wire grid inductance, Sandia Report, SAND2007-8116, Jan. 2008.

    16. Warne, L. K., W. L. Langston, L. I. Basilio, and W. A. Johnson, Cable braid electromagnetic penetration model, Sandia National Laboratories Report, SAND2015-5019, Albuquerque, NM, Jun. 2015.