Vol. 67
Latest Volume
All Volumes
PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-05-09
Bistatic Scattering Characteristics of Wheat and Soybean by Radiative Transfer Model in L Band and C Band
By
Progress In Electromagnetics Research B, Vol. 67, 121-136, 2016
Abstract
Compared with the backscattering configuration, the bistatic scattering echoes can provide multidimensional information on land surface. Based on the Michigan Microwave Canopy Scattering (MIMICS) model, a first-order microwave bistatic scattering model for vegetations is developed in this paper. The dominant scattering mechanism for wheat and soybean in the L and C bands is analyzed by simulating the bistatic scattering echoes in multiple viewpoints, which can help us understand the interaction between incident wave and vegetation parameters. The influence of crop height, leaf size and moisture of vegetations and down layer soil on the scattering echoes is fully investigated. The simulations show that the bistatic scattering echoes are more sensitive to the vegetation parameters than that in backscattering configuration. There exist optimal scattering angles, in specular direction and in direction perpendicular to the incident plane, to improve the retrieval accuracy of vegetation parameters and moisture of soil surface. Moreover, the simulations demonstrate that bistatic scattering echoes in high frequency (C band) are a good choice to retrieve the vegetation parameters, and the echoes in low frequency (L band) are preferred to retrieve the soil parameters. This research can be used to provide reference for crop monitoring and future bistatic system design.
Citation
Yuan-Yuan Zhang Zhen-Sen Wu , "Bistatic Scattering Characteristics of Wheat and Soybean by Radiative Transfer Model in L Band and C Band," Progress In Electromagnetics Research B, Vol. 67, 121-136, 2016.
doi:10.2528/PIERB16011502
http://www.jpier.org/PIERB/pier.php?paper=16011502
References

1. Dabrowska-Zielinska, K., et al., "Inferring the effect of plant and soil variables on C-and L-band SAR backscatter over agricultural fields, based on model analysis," Advances in Space Research, Vol. 39, 139-148, 2007.
doi:10.1016/j.asr.2006.02.032

2. Liao, J., T. Xu, and G. Shen, "Simulating microwave scattering for wetland vegetation in poyang lake, southeast china, using a coherent scattering model," Remote Sensing, Vol. 7, No. 8, 9796-9821, 2015.
doi:10.3390/rs70809796

3. Yang, L. and L. Hao, "Numerical modeling and mechanism analysis of vhf wave propagation in forested environments using the equivalent slab model," Progress In Electromagnetics Research, Vol. 91, 17-34, 2009.

4. Garcia-Rubia, J. M., O. Kilic, V. Dang, Q. Nguyen, and N. Tran, "Analysis of moving human micro-doppler signature in forest environments," Progress In Electromagnetics Research, Vol. , -14,2014, Vol. 148, 1-14, 2014.

5. Johnson, J. T. and J. D. Ouellette, "Polarization features in bistatic scattering from rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 3, 1616-1626, 2014.
doi:10.1109/TGRS.2013.2252909

6. Nashashibi, A. Y. and F. T. Ulaby, "MMW polarimetric radar bistatic scattering from a random surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 6, 1743-1755, 2007.
doi:10.1109/TGRS.2007.894439

7. Schlund, M., F. V. Poncet, D. H. Hoekman, S. Kuntz, and C. Schmullius, "Importance of bistatic SAR Features from TanDEM-X for forest mapping and monitoring," Remote Sensing of Environment, Vol. 151, No. 8, 16-26, 2014.
doi:10.1016/j.rse.2013.08.024

8. Gupta, D. K., P. Kumar, V. N. Mishra, R. Prasad, P. K. S. Dikshit, S. B. Dwivedi, A. Ohri, R. S. Singh, and V. Srivastava, "Bistatic measurements for the estimation of Rice crop variables using artifical neural network," Advances in Space Reasearch, Vol. 55, 1613-1623, 2015.
doi:10.1016/j.asr.2015.01.003

9. Bellez, S., H. Roussel, C. Dahon, and J. M. Geffrin, "A rigorous forest scattering model validation through comparison with indoor bistatic scattering measurements," Progress In Electromagnetics Research B, Vol. 33, 1-19, 2011.
doi:10.2528/PIERB11063009

10. Thirion-Lefevre, L., E. Colin-Koeniguer, and C. Dahon, "Bistatic scattering from forest components. Part I: coherent polarimetric modelling and analysis of simulated results," Waves in Random and Complex Media, Vol. 20, No. 1, 36-61, 2010.
doi:10.1080/17455030903499680

11. Ulaby, F. T., K. Sarabandi, K. Mcdonald, M. Whitt, and M. C. Dobson, "Michigan microwave canopy scattering model," International Journal of Remote Sensing, Vol. 11, No. 7, 1223-1253, 1990.
doi:10.1080/01431169008955090

12. Toure, A., K. P. B. Thomson, G. Edwards, R. J. Brown, and B. G. Btisco, "Adaptation of the MIMICS backscattering model to the agricultural context-wheat and canola at L and C bands," IEEE Transactions on Geoscience & Remote Sensing, Vol. 32, No. 1, 47-61, 1994.
doi:10.1109/36.285188

13. Mattia, F., T. L. Toan, G. Picard, F. I. Posa, A. D’Alessio, C. Notarnicola, A. M. Gatti, M. Rinaldi, G. Satalino, and G. Pasqua, "Multitemporal C-band radar measurements on wheat fields," IEEE Transactions on Geoscience & Remote Sensing, Vol. 41, No. 7, 1551-1560, 2003.
doi:10.1109/TGRS.2003.813531

14. Huang, B., Y. Chen, L. He, L. Tong, and Y. Wang, "Backscattering modeling of wheat using vector radiative transfer theory," Journal of Applied Remote Sensing, Vol. 9, 2015.

15. Kweon, S. K., J. H. Hwang, and Y. S. Oh, "Development of a scattering model for soybean fields and verification with scatterometer and SAR data at X-band," Journal of Electromagnetic Engineering and Science, Vol. 12, No. 1, 115-121, 2012.
doi:10.5515/JKIEES.2012.12.1.115

16. Du, Y., Y. L. Luo, and W. Z. Yan, "An electromagnetic scattering model for soybean canopy," Progress In Electromagnetics Research, Vol. 79, 209-223, 2008.
doi:10.2528/PIER07101603

17. Champion, I., L. Preot, and G. Guyot, "Generalized semi-empirical modelling of wheat radar response," International Journal of Remote Sensing, Vol. 21, No. 9, 1945-1951, 2000.
doi:10.1080/014311600209869

18. De Roo, R. D., Y. Du, F. T. Ulaby, and M. C. Dobson, "A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion," IEEE Transactions on Geoscience & Remote Sensing, Vol. 39, No. 4, 864-872, 2001.
doi:10.1109/36.917912

19. Kweon, S. K. and Y. Oh, "A modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural field," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 5, 2802-2809, 2015.
doi:10.1109/TGRS.2014.2364914

20. Kim, Y., T. Jackson, R. Bindlish, H. Lee, and S. Hong, "Monitoring soybean growth using L-, C-, and X-band scatterometer data," International Journal of Remote Sensing, Vol. 34, No. 11, 4069-4082, 2013.
doi:10.1080/01431161.2013.772309

21. Jia, M., L. Tong, Y. Zhang, and Y. Chen, "Multitemporal radar backscattering measurement of wheat fields using multifrequency (L, S, C, and X) and full-polarization," Radio Science, Vol. 48, 471-481, 2013.
doi:10.1002/rds.20048

22. Prakash, R., D. Singh, and N. P. Pathak, "The effect of soil texture in soil moisture retrieval for specular scattering at c-band," Progress In Electromagnetics Research, Vol. 108, No. 4, 177-204, 2010.
doi:10.2528/PIER10050403

23. Brogioni, M., S. Pettinato, G. Macelloni, S. Paloscia, P. Pampaloni, N. Pierdicca, and F. Ticconi, "Sensitivity of bistatic scattering to soil moisture and surface roughness of bare soils," International Journal of Remote Sensing, Vol. 31, No. 15, 4227-4255, 2010.
doi:10.1080/01431160903232808

24. Mittal, G. and D. Singh, "Critical analysis of microwave specular scattering response on roughness parameter and moisture content for bare periodic rough surfaces and its retrieva," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.
doi:10.2528/PIER09091705

25. Mclaughlin, D. J., Y. Wu, W. G. Stevens, X. Zhang, M. J. Sowa, and B. Weijers, "Fully polarimetric bistatic radar scattering behavior of forested hills," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 101-110, 2002.
doi:10.1109/8.997978

26. Liang, P., M. Moghaddam, L. E. Pierce, and R. M. Lucas, "Radar backscattering model for multilayer mixed-species forests," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 11, 2612-2626, 2005.
doi:10.1109/TGRS.2005.847909

27. Ferrazzoli, P., L. Guerriero, and D. Solimini, "Simulating bistatic scatter from surfaces covered with vegetation," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 2, 233-248, 2000.
doi:10.1163/156939300X00743

28. Karam, M. A., A. K. Fung, and Y. M. M. Antar, "Electromagnetic wave scattering from some vegetation samples," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 6, 1988.
doi:10.1109/36.7711

29. Ulaby, F. T. and M. A. Elrayes, "Microwave dielectric spectrum of vegetation — part II: Dualdispersion model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 25, No. 5, 550-557, 1987.
doi:10.1109/TGRS.1987.289833

30. Vine, D. M. L. and M. A. Karam, "Dependence of attenuation in a vegetation canopy on frequency and plant water content," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 5, 1090-1096, 1996.
doi:10.1109/36.536525

31. Tiwari, R., R. K. Singh, D. S. Chauhan, O. P. Singh, R. Prakash, and D. Singh, "Microwave scattering for soil texture at X-band and its retrieval using genetic algorithm," Advances in Remote Sensing, Vol. 3, 120-127, 2014.
doi:10.4236/ars.2014.33010

32. Pierdicca, N., L. Pulvirenti, F. Ticconi, and M. Brogioni, "Radar bistatic configurations for soil moisture retrieval: A simulation study," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3252-3264, 2008.
doi:10.1109/TGRS.2008.921495

33. Prakash, R., D. Singh, and N. P. Pathak, "Microwave specular scattering response of soil texture at X-band," Advances in Space Research, Vol. 44, No. 7, 801-814, 2009.
doi:10.1016/j.asr.2009.05.016

34. Bindlish, R. and A. P. Barros, "Parameterization of vegetation backscatter in radar-based, soil moisture estimation," Remote Sensing of Environment, Vol. 76, No. 1, 130-137, 2001.
doi:10.1016/S0034-4257(00)00200-5