Vol. 66

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-05-03

Strain and Dispersion Dependence of High Frequency Electromagnetic Properties of Carbon Nanotube/Epoxy Nanocomposites

By Gaurav Pandey
Progress In Electromagnetics Research B, Vol. 66, 157-169, 2016
doi:10.2528/PIERB16012009

Abstract

An experimental setup and data reduction method has been developed for noninvasive high frequency electromagnetic impedance measurements of carbon nanotube (CNT)/epoxy nanocomposites. Using time domain reflectometry and parallel plate transmission lines, dielectric properties can be measured with the specimen under tensile loading. Good dispersion and addition of CNTs lead to an increase in high frequency dielectric constant of the nanocomposites. A strong strain dependence of the impedance is observed for the well dispersed nanocomposite while the baseline epoxy showed no strain dependence. A mechanism, based on an increase in CNT-CNT tunneling capacitance with applied tensile strain has been suggested. This research is expected to introduce a noninvasive characterization technique for studying electromagnetic properties of conductive nanocomposites.

Citation


Gaurav Pandey, "Strain and Dispersion Dependence of High Frequency Electromagnetic Properties of Carbon Nanotube/Epoxy Nanocomposites," Progress In Electromagnetics Research B, Vol. 66, 157-169, 2016.
doi:10.2528/PIERB16012009
http://www.jpier.org/PIERB/pier.php?paper=16012009

References


    1. Mathur, R. B., S. Pande, B. P. Singh, and T. L. Dhami, "Electrical and mechanical properties of multiwalled carbon nanotubes reinforced PMMA and PS composites," Polymer Composites, Vol. 29, No. 7, 717-727, 2008.
    doi:10.1002/pc.20449

    2. Kim, H. M., K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, "Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing fe catalyst," Appl. Phys. Lett., Vol. 84, No. 4, 589-591, 2004.
    doi:10.1063/1.1641167

    3. Arjmand, M., M. Mahmoodi, G. A. Gelves, S. Park, and U. Sundararaj, "Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate," Carbon, Vol. 49, No. 11, 3430-3440, September 2011.
    doi:10.1016/j.carbon.2011.04.039

    4. Thostenson, E. T. and T. Chou, "Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites RID B-8587-2008," Carbon, Vol. 44, No. 13, 3022-3029, November 2006.

    5. Mierczynska, A., M. Mayne-L'Hermite, G. Boiteux, and J. K. Jeszka, "Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method," J. Appl. Polym. Sci., Vol. 105, No. 1, 158-168, July 5, 2007.
    doi:10.1002/app.26044

    6. Ayatollahi, M. R., S. Shadlou, M. M. Shokrieh, and M. Chitsazzadeh, "Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites," Polym. Test., Vol. 30, No. 5, 548-556, August 2011.
    doi:10.1016/j.polymertesting.2011.04.008

    7. Lee, S. H., M. W. Kim, S. H. Kim, and J. R. Youn, "Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips," European Polymer Journal, Vol. 44, No. 6, 1620-1630, June 2008.
    doi:10.1016/j.eurpolymj.2008.03.017

    8. Bauhofer, W. and J. Z. Kovacs, "A review and analysis of electrical percolation in carbon nanotube polymer composites," Composites Sci. Technol., Vol. 69, No. 10, 1486-1498, 2009.
    doi:10.1016/j.compscitech.2008.06.018

    9. Li, C., E. T. Thostenson, and T. Chou, "Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites RID C-8998-2011 RID B-8587-2008," Appl. Phys. Lett., Vol. 91, No. 22, 223114, November 26, 2007.
    doi:10.1063/1.2819690

    10. Rutherglen, C. and P. Burke, "Nanoelectromagnetics: Circuit and electromagnetic properties of carbon nanotubes," Small, Vol. 5, No. 8, 884-906, 2009.
    doi:10.1002/smll.200800527

    11. Smolyansky, D. and S. Corey, "PCB interconnect characterization from TDR measurements," Electronic Engineering, Vol. 71, No. 870, 63, July 1999.

    12. O'Connor, K. M. and C. M. Dowding, Geomeasurements by Pulsing TDR Cables and Probes, 402, CRC Press, Boca Raton, 1999.

    13. Lin, M. and J. Thaduri, Structural Damage Detection Using an Embedded ETDR Distributed Strain Sensor, 315, Springer, New York, 2005.

    14. Chen, G., H. Mu, D. Pommerenke, and J. L. Drewniak, "Damage detection of reinforced concrete beams with novel distributed Crack/Strain sensors," Structural Health Monitoring, Vol. 3, No. 3, 225-243, September 1, 2004.
    doi:10.1177/1475921704045625

    15. Dominauskas, A., D. Heider, J. W., Gillespie, and Jr., "Electric time-domain reflectometry distributed flow sensor," Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 1, 138, 2007.
    doi:10.1016/j.compositesa.2006.01.019

    16. Obaid, A. A., S. Yarlagadda, M. K. Yoon, N. E. Hager, and R. C. Domszy, "A time-domain reflectometry method for automated measurement of crack propagation in composites during mode I DCB testing," Journal of Composite Materials, Vol. 40, No. 22, 2047-2066, November.
    doi:10.1177/0021998306061309

    17. Pandey, G., M. Wolters, E T. Thostenson, and D. Heider, "Localized functionally modified glass fibers with carbon nanotube networks for crack sensing in composites using time domain reflectometry," Carbon, Vol. 50, No. 10, 3816-3825, 2012.
    doi:10.1016/j.carbon.2012.04.008

    18. Ahir, S. and E. Terentjev, "Photomechanical actuation in polymer-nanotube composites," Nature Materials, Vol. 4, No. 6, 491-495, June 2005.
    doi:10.1038/nmat1391

    19. Ahir, S., A. Squires, A. Tajbakhsh, and E. Terentjev, "Infrared actuation in aligned polymer-nanotube composites RID B-7623-2011," Physical Review B, Vol. 73, No. 8, 085420, February 2006.
    doi:10.1103/PhysRevB.73.085420

    20. Koerner, H., G. Price, N. Pearce, M. Alexander, and R. Vaia, "Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers," Nature Materials, Vol. 3, No. 2, 115-120, February 2004.
    doi:10.1038/nmat1059

    21. Rochefort, A., P. Avouris, F. Lesage, and D. Salahub, "Electrical and mechanical properties of distorted carbon nanotubes RID A-5124-2010," Physical Review B, Vol. 60, No. 19, 13824-19330, November 15, 1999.
    doi:10.1103/PhysRevB.60.13824

    22. Kenneth, J. L., J. Kim, J. P. Lynch, N. Wong, S. Kam, and A. K. Nicholas, "Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing," Smart Mater. Struct., Vol. 16, No. 2, 429, 2007.
    doi:10.1088/0964-1726/16/2/022

    23. Park, M., H. Kim, and J. P. Youngblood, "Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films," Nanotechnology, Vol. 19, No. 5, 055705, 2008.
    doi:10.1088/0957-4484/19/05/055705

    24. Pham, G. T., Y. Park, Z. Liang, C. Zhang, and B. WangPham, G. T., Y. Park, Z. Liang, C. Zhang, B. Wang, "Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing," Composites Part B: Engineering, Vol. 39, No. v, 209-216, 2008.
    doi:10.1016/j.compositesb.2007.02.024

    25. Anandand, S. V. and D. R. Mahapatra, "Quasi-static and dynamic strain sensing using carbon nanotube/epoxy nanocomposite thin films," Smart Mater. Struct., Vol. 18, No. 4, 045013, 2009.
    doi:10.1088/0964-1726/18/4/045013

    26. Hu, N., Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga, "Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor," Carbon, Vol. 48, No. 3, 680-687, 2010.
    doi:10.1016/j.carbon.2009.10.012

    27. Srivastava, R. K., V. S. M. Vemuru, Y. Zeng, R. Vajtai, S. Nagarajaiah, P. M. Ajayan, and A. Srivastava, "The strain sensing and thermal-mechanical behavior of flexible multi-walled carbon nanotube/polystyrene composite films," Carbon, Vol. 49, No. 12, 3928-3936, October 2011.
    doi:10.1016/j.carbon.2011.05.031

    28. Fellner-Feldegg, H., "Measurement of dielectrics in the time domain," J. Phys. Chem., Vol. 73, No. 3, 616-623, 1969.
    doi:10.1021/j100723a023

    29. Castiglione, P. and P. J. Shouse, "The effect of ohmic cable losses on time-domain re°ectometry measurements of electrical conductivity," Soil Science Society of America Journal, Vol. 67, No. 2, March 2003.
    doi:10.2136/sssaj2003.4140

    30. Robinson, D. A. and S. P. Friedman, Parallel Plates Compared with Conventional Rods as TDR Waveguides for Sensing Soil Moisture, 497, Springer, Netherlands, 2000.

    31. Faria, J. A. B., Electromagnetic Foundations of Electrical Engineering, 399, Wiley, Chichester, U.K., 2008.
    doi:10.1002/9780470697498

    32. Schlaeger, S., "A fast TDR-inversion technique for the reconstruction of spatial soil moisture content," Hydrol. Earth Syst. Sci., Vol. 9, No. 5, 481-492, 2005.
    doi:10.5194/hess-9-481-2005

    33. Platt, I. G. and I. M. Woodhead, "A 1D inversion for non-invasive time domain reflectometry," Meas. Sci. Technol., Vol. 19, No. 5, 055708, May 2008.
    doi:10.1088/0957-0233/19/5/055708

    34. Hsue, C.-W. and T.-W. Pan, "Reconstruction of nonuniform transmission lines from timedomain reflectometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 32-38, 1997.
    doi:10.1109/22.552029

    35. Banninger, D., H. Wunderli, M. Nussberger, and H. Fluhler, "Inversion of TDR signals revisited," Journal of Plant Nutrition and Soil Science, Vol. 171, No. 2, 137-145, 2008.
    doi:10.1002/jpln.200700179

    36. Christopoulos, C., The Transmission-line Modeling Method: TLM, Oxford University Press, Institute of Electrical and Electronics Engineers, Oxford, New York, 1995.
    doi:10.1109/9780470546659

    37. Thostenson, E. T., S. Ziaee, and T. Chou, "Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites," Composites Sci. Technol., Vol. 69, No. 6, 801-804, May 2009.
    doi:10.1016/j.compscitech.2008.06.023

    38. Dang, Z., S. Yao, and H. Xu, "Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites," Applied Physics Letters, Vol. 90, No. 1, 012907-012907-3, 2007.
    doi:10.1063/1.2430633

    39. Lee, H. Y. and Y. M. Shkel, "Dielectric response of solids for contactless detection of stresses and strains," Sensors and Actuators A: Physical, Vol. 137, No. 2, 287, 2007.
    doi:10.1016/j.sna.2007.03.029

    40. Lee, H. Y., Y. Peng, and Y. M. Shkel, Strain-dielectric response of dielectrics as foundation for electrostriction stresses, American Institute of Physics, 2005.

    41. Lan, C., P. Srisungsitthisunti, P. B. Amama, T. S. Fisher, X. Xu, and R. G. Reifenberger, "Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation," Nanotechnology, Vol. 19, No. 12, 125703, 2008.
    doi:10.1088/0957-4484/19/12/125703

    42. Noborio, K., "Measurement of soil water content and electrical conductivity by time domain reflectometry: A review," Comput. Electron. Agric., Vol. 31, No. 3, 213-237, 2001.
    doi:10.1016/S0168-1699(00)00184-8