Vol. 68

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Survey of Beam Steering Techniques Available for Millimeter Wave Applications

By Iyemeh Uchendu and James R. Kelly
Progress In Electromagnetics Research B, Vol. 68, 35-54, 2016


Pattern reconfigurable antennas (beam steerable antennas) are essential for various applications in electronic engineering such as telecommunication and radar. They mitigate interference by channelling the antenna's radiation to the direction of interest. This ability is vital for millimetre wave frequency applications such as small cell backhaul links where high path loss, attenuation from obstacles, and misalignment due to wind sway and accidents are prevalent. Several techniques have been used to implement beam steering over the years, most of which achieves steering at the expense of antenna performance. In this article, we surveyed the various techniques used in achieving beam steering and analyse each based on some figures of merit with the aim of identifying areas of improvements for each beam steering technique.


Iyemeh Uchendu and James R. Kelly, "Survey of Beam Steering Techniques Available for Millimeter Wave Applications," Progress In Electromagnetics Research B, Vol. 68, 35-54, 2016.


    1. Rappaport, T. S., R. Mayzus, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.

    2. Watson, P. A., "Propagation factors in millimetre-wave radio-system design," Electron. Power, Vol. 23, 569, July 1977.

    3., "Millimeter-Wave (MMW) Radio Transmission: Atmospheric Propagation, Link Budget and System Availability," Light Pointe White Paper Series, 2010.

    4. Weibel, G. E. and H. O. Dressel, "Propagation studies in millimeter-wave link systems," Proc. IEEE, Vol. 55, No. 4, 1967.

    5. Chen, Z., G. Gopal, and Y. Yu, Introduction to Direction-of-arrival Estimation, Artech House, Norwood, MA, USA, 2010.

    6. Johnson, D. H., "The application of spectral estimation methods to bearing estimation problems," Proc. IEEE, Vol. 70, No. 9, 1018-1028, Sept. 1982.

    7. Maguer, A., "Detection of targets in presence of strong jammers by adaptive beamforming," 1989 International Conference on Acoustics, Speech, and Signal Processing, ICASSP-89, Vol. 4, 2815-2818, May 23-26, 1989.

    8. Yongzhe, L., S. A. Vorobyov, and A. Hassanien, "Robust beamforming for jammers suppression in MIMO radar," 2014 IEEE Radar Conference, 0629-0634, May 19-23, 2014.

    9. Shin, C., J. Ju, D. Kang, S. Choi, C. Lee, C. Cheong, J. Seo, T. K. Sarkar, and M. Salazar Palma, "Implementation of an antenna array for satellite communications with the capability of canceling jammers," IEEE Antennas and Propagation Magazine, Vol. 55, No. 1, 32-48, Feb. 2013.

    10. Bruce, E. and A. C. Beck, "Experiments with directivity steering for fading reduction," Proc. IRE, Vol. 23, No. 4, 357-371, Apr. 1935.

    11. Chiao, J., Y. Fu, I. M. Chio, M. DeLisio, and L. Y. Lin, "MEMS reconfigurable vee antenna," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 4, 1515-1518, 1999.

    12. Baek, C. W., S. Song, C. Cheon, Y. Kim, and Y. Kwon, "2-D mechanical beam steering antenna fabricated using MEMS technology," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 1, 2001.

    13. Rodrigo, D., L. Jofre, and B. A. Cetiner, "Circular beam-steering reconfigurable antenna with liquid metal parasitics," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1796-1802, 2012.

    14. Zarb-Adami, K., A. Faulkner, J. G. B. De Vaate, G. W. Kant, and P. Picard, "Beamforming techniques for large-N aperture arrays," IEEE Int. Symp. Phased Array Syst. Technol., 883-890, 2010.

    15. Van Veen, B. D. and K. M. Buckley, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Magazine, Vol. 5, 4-24, 1988.

    16. Steyskal, H., "Digital beamforming," 18th European Microwave Conference, 49-57, 1988.

    17. Topak, E., J. Hasch, C. Wagner, and T. Zwick, "A novel millimeter-wave dual-fed phased array for beam steering," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 8, 3140-3147, 2013.

    18. Robertson, I., MMIC Design, Institution of Electrical Engineers, Londres, 1995.

    19. Nemati, M. H., M. Kaynak, and B. Tillack, "SiGe process integrated full-360o microelectrome- chanical systems-based active phase shifter for W-band automotive radar," IET Microw. Antennas Propag., Vol. 8, No. 11, 835-841, 2014.

    20. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons Inc., , Canada, 2005.

    21. Cardoso, A. S., P. Saha, P. S. Chakraborty, D. M. Fleischhauer, and J. D. Cressler, "Lowloss, wideband SPDT switches and switched-line phase shifter in 180-nm RF CMOS on SOI technology," IEEE Radio and Wireless Symposium (RWS), 199-201, 2014.

    22. Zhang, J., S. W. Cheung, and Q. Zhu, "Design of 180o-switched-line phase shifter with constant phase shift using CRLH TL," IEEE Antennas and Propagation Society International Symposium (APSURSI), 344-345, 2014.

    23. Chen, P. Y., C. Argyropoulos, and A. Alu, "Terahertz antenna phase shifters using integrallygated graphene transmission-lines," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1528-1537, Apr. 2013.

    24. Pozar, D., Microwave Engineering, 4th Ed., John Wiley & Sons Inc., 2005.

    25. Atwater, H. A., "Reflection coefficient transformations for phase-shift circuits," IEEE Trans. Microw. Theory Tech., Vol. 28, No. 6, 563-568, Jun. 1980.

    26. Miller, D., S. Reiss, H. Masslert, A. Leuthert, and T. Zwick, "A H-band reflective-type phase shifter MMIC for ISM-band applications," IEEE MTT-S International Microwave Symposium (IMS), 1-4, Jun. 2014.

    27. Van den Bogaart, F. L. M. and R. Pyndiah, "A 10-14 GHz linear MMIC vector modulator with less than 0.1 dB and 0.8 degrees amplitude and phase error," IEEE International Digest on Microwave Symposium, Vol. 1, 465-468, May 1990.

    28. Ellinger, F. and W. Bachtold, "Novel principle for vector modulator-based phase shifters operating with only one control voltage," IEEE J. Solid-State Circuits, Vol. 37, No. 10, 1256-1259, Oct. 2002.

    29. Kim, S. J. and N. H. Myung, "A new active phase shifter using a vector sum method," IEEE Microw. Guid. Wave Lett., Vol. 10, No. 6, 233-235, Jun. 2000.

    30. Godara, L. C., "Application of the fast fourier transform to broadband beamforming," J. Acoust. Soc. Amer., Vol. 98, No. 1, 230-240, Jul. 1995.

    31. Do-Hong, T. and P. Russer, "Signal processing for wideband smart antenna array applications," IEEE Microw. Mag., Vol. 5, No. 1, 57-67, Mar. 2004.

    32. Han, S., I. Chih-Lin, Z. Xu, and S. Wang, "Reference signals design for hybrid analog and digital beamforming," IEEE Commun. Lett., Vol. 18, No. 7, 1191-1193, 2014.

    33. Raisanen, A. V., J. Ala-Laurinaho, D. Chicherin, Z. Du, A. Generalov, A. Karttunen, D. Lioubtchenko, J. Mallat, A. Tamminen, and T. Zvolensky, "Beam-steering antennas at millimeter wavelengths," 5th Global Symposium on Millimeter-Waves Proc., 170173, May 2012.

    34. Antar, D. and Y. Guha, Microstrip and Printed Antennas: New Trends, Techniques and Applications, John Wiley & Sons, Hoboken, NJ, USA, 2010.

    35. Kawakami, H. and T. Ohira, "Electrically steerable passive array radiator (ESPAR) antennas," IEEE Antennas Propag. Mag., Vol. 47, No. 2, 43-50, Apr. 2005.

    36. Vilar, R., R. Czarny, M. L. Lee, B. Loiseaux, M. Sypek, M. Makowski, C. Martel, T. Crepin, F. Boust, R. Joseph, K. Herbertz, T. Bertuch, and J. Marti, "Q-band millimeter-wave antennas: An enabling technology for multigigabit wireless backhaul," IEEE Microw. Mag., Vol. 15, No. 4, 121-130, Jun. 2014.

    37. Kamarudin, M. R., P. S. Hall, F. Colombel, and M. Himdi, "Electronically switched beam disk-loaded monopole array antenna," Progress In Electromagnetics Research, Vol. 101, 339-347, 2010.

    38. Ares-Pena, F. J., G. Franceschetti, and J. A. Rodriguez, "A simple alternative for beam reconfiguration of array antennas," Progress In Electromagnetics Research, Vol. 88, 227-240, 2008.

    39. Sabapathy, T., M. F. Jamlos, R. B. Ahmad, M. Jusoh, and M. I. Jais, "A reconfigurable microstrip rectangular parasitic array antenna," IEEE Symposium on Wireless Technology & Applications (ISWTA), 372-375, Sept. 2013.

    40. Jusoh, M., T. Aboufoul, T. Sabapathy, A. Alomainy, and M. R. Kamarudin, "Pattern reconfigurable microstrip patch antenna with multidirectional beam for WiMAX application," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 860-863, 2014.

    41. Li, Z., S. Member, D. Rodrigo, L. Jofre, and B. A. Cetiner, "A new class of antenna array with a reconfigurable element factor," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1947-1955, Apr. 2013.

    42. Yuan, X., Z. Li, D. Rodrigo, S. Member, H. S. Mopidevi, O. Kaynar, L. Jofre, and B. A. Cetiner, "A parasitic layer-based reconfigurable antenna design by multi-objective optimization," IEEE Trans. Antennas Propag., Vol. 60, No. 6, 2690-2701, Jun. 2012.

    43. Sabapathy, T., M. Jusoh, R. B. Ahmad, and M. R. Kamarudin, "Wide angle scanning reconfigurable beam steering antenna," 2015 European Microwave Conference (EuMC), 1451-1454, Paris, 2015.

    44. Uchendu, I. and J. Kelly, "Combined parasitic and phased array reconfigurable antenna," 2015 Loughborough Antennas & Propagation Conference (LAPC), 1-4, Loughborough, 2015.

    45. Sabapathy, T., R. B. Ahmad, M. Jusoh, M. R. Kamarudin, and A. Alomainy, "A pattern reconfigurable parasitic patch antenna using BAR and HPND PIN diode," 8th European Conference on Antennas and Propagation (EuCAP), 3444-3445, Apr. 2014.

    46. Buttgenbach, T. H., "Improved solution for integrated array optics in quasi-optical mm and submm receivers: The hybrid antenna," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 10, 1750-1761, Oct. 1993.

    47. Raisanen, A. V., J. Ala-Laurinaho, K. Haneda, J. Jarvelainen, A. Karttunen, M. Kyro, V. Semkin, A. Lamminen, and J. Saily, "Studies on E-band antennas and propagation," Loughborough Antennas & Propagation Conference (LAPC), 176-180, Nov. 2013.

    48. Artemenko, A., A. Maltsev, R. Maslennikov, A. Sevastyanov, and V. Ssorin, "Beam steerable quartz integrated lens antenna for 60 GHz frequency band," Proc. 5th Eur. Conf. Antennas Propag., 758-762, Apr. 2011.

    49. Ala-Laurinaho, J., A. Karttunen, J. Saily, A. Lamminen, R. Sauleau, and A. V. Raisanen, "MMwave lens antenna with an integrated LTCC feed array for beam steering," Proc. 4th Eur. Conf. Antennas Propag. (EuCAP), 2010.

    50. Artemenko, A., A. Mozharovskiy, A. Maltsev, R. Maslennikov, A. Sevastyanov, and V. Ssorin, "2D electronically beam steerable integrated lens antennas for mmwave applications," 42nd European Microwave Conference (EuMC), 213-216, Nov. 2012.

    51. Artemenko, A., A. Maltsev, A. Mozharovskiy, A. Sevastyanov, V. Ssorin, and R. Maslennikov, "Millimeter-wave electronically steerable integrated lens antennas for WLAN/WPAN applications," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1665-1671, Apr. 2013.

    52. Filipovic, D. F., G. P. Gauthier, S. Raman, and G. M. Rebeiz, "Off-axis properties of silicon and quartz dielectric lens antennas," IEEE Trans. Antennas Propag., Vol. 45, No. 5, 760-766, May 1997.

    53. Lam, T. A., D. C. Vier, J. A. Nielsen, C. G. Parazzoli, and M. H. Tanielian, "Steering phased array antenna beams to the horizon using a buckyball NIM lens," Proc. IEEE, Vol. 99, No. 10, 1755-1767, Oct. 2011.

    54. Frezza, F., "Introduction to traveling-wave antennas," European School of Antennas, 1-10, 2006.

    55. Karmokar, D. K. and K. P. Esselle, "Periodic U-slot-loaded dual-band half-width microstripleaky- wave antennas for forward and backward beam scanning," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5372-5381, Dec. 2015.

    56. Topak, E., J. Hasch, C. Wagner, and T. Zwick, "A novel millimeter-wave dual-fed phased array for beam steering," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 8, 3140-3147, Aug. 2013.

    57. Khalil, M., M. Kamarei, J. Jomaah, and H. Ayad, "Compact SIW leaky wave antenna," 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), 124-129, Apr. 2015.

    58. Karmokar, D. K., K. P. Esselle, and S. G. Hay, "A microstrip leaky-wave antenna with two symmetrical beams towards sides for fixed-frequency dual-beam scanning," 2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-2, Jul. 13-16, 2014.

    59. Karmokar, D. K., K. P. Esselle, and S. G. Hay, "Shifting the fixed-frequency beam scanning range of a leaky-wave antenna by slot loading," 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 640-643, Aug. 3-9, 2014.

    60. Wang, X., W. Zhao, J. Hu, and W. Yin, "Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface," IEEE Transactions on Nanotechnology, Vol. 14, No. 1, 62-69, Jan. 2015.

    61. Ghasemi, A., S. N. Burokur, A. Dhouibi, and A. de Lustrac, "Phase-gradient metasurfaces for beam steerable antennas," 2014 International Workshop on Antenna Technology: "Small Antennas, Novel EM Structures and Materials, and Applications" (iWAT), 191-194, Mar. 4-6, 2014.

    62. Guo, Y.-C., X.-W. Shi, and L. Chen, "Retrodirective array technology," Progress In Electromagnetics Research B, Vol. 5, 153-167, 2008.

    63. Miyamoto, R. Y. and T. Itoh, "Retrodirective arrays for wireless communications," IEEE Microw. Mag., Vol. 3, No. 1, 71-79, Mar. 2002.

    64. Chen, L., Y. C. Guo, X. W. Shi, and T. L. Zhang, "Overview on the phase conjugation techniques of the retrodirective array," Int. J. Antennas Propag., Vol. 2010, 2010.

    65. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, No. 4, 509-514, Jan.-Feb. 1968.

    66. Symeonidou, A. and K. Siakavara, "A novel microstrip antenna array with metamaterial-based electronic beam steering at 2.4 GHz," Progress In Electromagnetics Research C, Vol. 38, 27-42, 2013.

    67. Jiang, T., Z. Wang, D. Li, J. Pan, B. Zhang, J. Huangfu, Y. Salamin, C. Li, and L. Ran, "Low-Dc voltage-controlled steering-antenna radome utilizing tunable active metamaterial," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 1, 170-178, Jan. 2012.

    68. Li, H., D. Ye, F. Shen, B. Zhang, Y. Sun, W. Zhu, C. Li, and L. Ran, "Reconfigurable diffractive antenna based on switchable electrically induced transparency," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 3, 925-936, Mar. 2015.

    69. Pan, W., C. Huang, P. Chen, M. Pu, X. Ma, and X. Luo, "A beam steering horn antenna using active frequency selective surface," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6218-6223, Dec. 2013.

    70. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Beam-deflection using gradient refractive-index media for 60-GHz nnd-Fire antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3768-3774, Aug. 2015.

    71. Sun, F., Y. Ma, and S. He, "Two beam steering lenses enabled by metamaterials," 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, Suzhou, 2015.

    72. Wu, Z. N., W. X. Tang, and T. J. Cui, "A beam-steerable metamaterial lens using varactor diodes," 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, Suzhou, 2015.