Vol. 68

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-06-25

Magnetoelectric-Field Microwave Antennas: Far-Field Orbital Angular Momenta from Chiral-Topology Near Fields

By Maksim Berezin, Eugene O. Kamenetskii, and Reuven Shavit
Progress In Electromagnetics Research B, Vol. 68, 141-157, 2016
doi:10.2528/PIERB16041203

Abstract

The near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have space and time symmetry breakings. Such MDM-originated fields --- called magnetoelectric (ME) fields --- carry both spin and orbital angular momentums. By virtue of unique topology, ME fields are strongly different from free-space electromagnetic (EM) fields. In this paper, we show that because of chiral topology of ME fields in a near-field region, farfield orbital angular momenta (OAM) can be observed, both numerically and experimentally. In a single-element antenna, we obtain a radiation pattern with an angular squint. We reveal that in far-field microwave radiation a crucial role is played by the ME energy distribution in the near-field region.

Citation


Maksim Berezin, Eugene O. Kamenetskii, and Reuven Shavit, "Magnetoelectric-Field Microwave Antennas: Far-Field Orbital Angular Momenta from Chiral-Topology Near Fields," Progress In Electromagnetics Research B, Vol. 68, 141-157, 2016.
doi:10.2528/PIERB16041203
http://www.jpier.org/PIERB/pier.php?paper=16041203

References


    1. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A, Vol. 45, 8185, 1992.
    doi:10.1103/PhysRevA.45.8185

    2. Allen, L. and M. J. Padgett, "The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density," Opt. Commun., Vol. 184, 67, 2000.
    doi:10.1016/S0030-4018(00)00960-3

    3. Celechovsky, R. and Z. Bouchal, "Optical implementation of the vortex information channel," New J. Phys., Vol. 9, 328, 2007.
    doi:10.1088/1367-2630/9/9/328

    4. Gorodetski, Y., A. Drezet, C. Genet, and T. W. Ebbesen, "Generating far-field orbital angular momenta from near-field optical chirality," Phys. Rev. Lett., Vol. 110, 203906, 2013.
    doi:10.1103/PhysRevLett.110.203906

    5. Yu, H., H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, "Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light," Sci. Rep., Vol. 3, 3191, 2013.

    6. Zukauskas, A., M. Malinauskas, and E. Brasselet, "Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale," Appl. Phys. Lett., Vol. 103, 181122, 2013.
    doi:10.1063/1.4828662

    7. Liu, H., M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, C.- W. Qiu, and J. Teng, "Twisted focusing of optical vortices with broadband flat spiral zone plates," Adv. Opt. Mater., Vol. 2, 1193, 2014.
    doi:10.1002/adom.201400315

    8. Rodriguez-Fortuno, F. J., I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, "Resolving light handedness with an on-chip silicon microdisk," ACS Photon., Vol. 1, 762, 2014.
    doi:10.1021/ph500084b

    9. Dall, R., M. D. Fraser, A. S. Desyatnikov, G. Li, S. Brodbeck, M. Kamp, C. Schneider, S. Hofling, and E. A. Ostrovskaya, "Creation of orbital angular momentum states with chiral polaritonic lenses," Phys. Rev. Lett., Vol. 113, 200404, 2014.
    doi:10.1103/PhysRevLett.113.200404

    10. Thide, B., H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Phys. Rev. Lett., Vol. 99, 087701, 2007.
    doi:10.1103/PhysRevLett.99.087701

    11. Deng, C., W. Chen, Z. Zhang, Y. Li, and Z. Feng, "Generation of OAM radio waves using circular vivaldi antenna array," Int. J. Antenn. Propag., Vol. 2013, 847859, 2013.

    12. Edfors, O. and A. J. Johansson, "Is orbital angular momentum, OAM) based radio communication an unexploited area?," IEEE Trans. Antenn. Propag., Vol. 60, 1126, 2012.
    doi:10.1109/TAP.2011.2173142

    13. Gurevich, A. G. and G. A. Melkov, Magnetic Oscillations and Waves, CRC Press, New York, 1996.

    14. Kamenetskii, E. O., "Vortices and chirality of magnetostatic modes in quasi-2D ferrite disc particles," J. Phys. A: Math. Theor., Vol. 40, 6539, 2007.
    doi:10.1088/1751-8113/40/24/017

    15. Kamenetskii, E. O., "Helical-mode magnetostatic resonances in small ferrite particles and singular metamaterials," J. Phys.: Condens. Matter, Vol. 22, 486005, 2010.
    doi:10.1088/0953-8984/22/48/486005

    16. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: Magnetic-dipolar-mode vortex polaritons," Phys. Rev. A, Vol. 84, 023836, 2011.
    doi:10.1103/PhysRevA.84.023836

    17. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Microwave magnetoelectric fields and their role in the matter-field interaction," Phys. Rev. E, Vol. 87, 023201, 2013.
    doi:10.1103/PhysRevE.87.023201

    18. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological-phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles," J. Opt., Vol. 14, 125602, 2012.
    doi:10.1088/2040-8978/14/12/125602

    19. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological properties of microwave magnetoelectric fields," Phys. Rev. E, Vol. 89, 023207, 2014.
    doi:10.1103/PhysRevE.89.023207

    20. Kamenetskii, E. O., E. Hollander, R. Joffe, and R. Shavit, "Unidirectional magnetoelectric-field multiresonant tunneling," J. Opt., Vol. 17, 025601, 2015.
    doi:10.1088/2040-8978/17/2/025601

    21. Kamenetskii, E. O., M. Berezin, and R. Shavit, "Microwave magnetoelectric fields: helicities and reactive power flows," Appl. Phys. B: Lasers Opt., Vol. 121, 31, 2015.
    doi:10.1007/s00340-015-6199-5

    22. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Quantum confinement of magnetic-dipolar oscillations in ferrite discs," J. Phys.: Condens. Matter, Vol. 17, 2211, 2005.
    doi:10.1088/0953-8984/17/13/018

    23. Fano, U., "Effects of configuration interaction on intensities and phase shifts," Phys. Rev., Vol. 124, 1866, 1961.
    doi:10.1103/PhysRev.124.1866

    24. Kamenetskii, E. O., G. Vaisman, and R. Shavit, "Fano resonances of microwave structures with embedded magneto-dipolar quantum dots," J. App. Phys., Vol. 114, 173902, 2013.
    doi:10.1063/1.4828712

    25. Fiebig, M., "Revival of the magnetoelectric effect," J. Phys. D, Vol. 38, R123, 2005.
    doi:10.1088/0022-3727/38/8/R01

    26. Mostovoy, M., "Ferroelectricity in spiral magnets," Phys. Rev. Lett., Vol. 96, 067601, 2006.
    doi:10.1103/PhysRevLett.96.067601

    27. Tokura, Y., S. Seki, and N. Nagaosa, "Multiferroics of spin origin," Rep. Prog. Phys., Vol. 77, 076501, 2014.
    doi:10.1088/0034-4885/77/7/076501

    28. Shindou, R., J.-I. Ohe, R. Matsumoto, S. Murakami, and E. Saitoh, "Chiral spin-wave edge modes in dipolar magnetic thin films," Phys. Rev. B, Vol. 87, 174402, 2013.
    doi:10.1103/PhysRevB.87.174402

    29. Shindou, R. and J.-I. Ohe, "Magnetostatic wave analog of integer quantum Hall state in patterned magnetic films," Phys. Rev. B, Vol. 89, 054412, 2014.
    doi:10.1103/PhysRevB.89.054412