Vol. 68

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Magnetoelectric-Field Microwave Antennas: Far-Field Orbital Angular Momenta from Chiral-Topology Near Fields

By Maksim Berezin, Eugene O. Kamenetskii, and Reuven Shavit
Progress In Electromagnetics Research B, Vol. 68, 141-157, 2016


The near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have space and time symmetry breakings. Such MDM-originated fields --- called magnetoelectric (ME) fields --- carry both spin and orbital angular momentums. By virtue of unique topology, ME fields are strongly different from free-space electromagnetic (EM) fields. In this paper, we show that because of chiral topology of ME fields in a near-field region, farfield orbital angular momenta (OAM) can be observed, both numerically and experimentally. In a single-element antenna, we obtain a radiation pattern with an angular squint. We reveal that in far-field microwave radiation a crucial role is played by the ME energy distribution in the near-field region.


Maksim Berezin, Eugene O. Kamenetskii, and Reuven Shavit, "Magnetoelectric-Field Microwave Antennas: Far-Field Orbital Angular Momenta from Chiral-Topology Near Fields," Progress In Electromagnetics Research B, Vol. 68, 141-157, 2016.


    1. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A, Vol. 45, 8185, 1992.

    2. Allen, L. and M. J. Padgett, "The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density," Opt. Commun., Vol. 184, 67, 2000.

    3. Celechovsky, R. and Z. Bouchal, "Optical implementation of the vortex information channel," New J. Phys., Vol. 9, 328, 2007.

    4. Gorodetski, Y., A. Drezet, C. Genet, and T. W. Ebbesen, "Generating far-field orbital angular momenta from near-field optical chirality," Phys. Rev. Lett., Vol. 110, 203906, 2013.

    5. Yu, H., H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu, Z. Wang, V. Petrov, and J. Wang, "Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light," Sci. Rep., Vol. 3, 3191, 2013.

    6. Zukauskas, A., M. Malinauskas, and E. Brasselet, "Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale," Appl. Phys. Lett., Vol. 103, 181122, 2013.

    7. Liu, H., M. Q. Mehmood, K. Huang, L. Ke, H. Ye, P. Genevet, M. Zhang, A. Danner, S. P. Yeo, C.- W. Qiu, and J. Teng, "Twisted focusing of optical vortices with broadband flat spiral zone plates," Adv. Opt. Mater., Vol. 2, 1193, 2014.

    8. Rodriguez-Fortuno, F. J., I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, "Resolving light handedness with an on-chip silicon microdisk," ACS Photon., Vol. 1, 762, 2014.

    9. Dall, R., M. D. Fraser, A. S. Desyatnikov, G. Li, S. Brodbeck, M. Kamp, C. Schneider, S. Hofling, and E. A. Ostrovskaya, "Creation of orbital angular momentum states with chiral polaritonic lenses," Phys. Rev. Lett., Vol. 113, 200404, 2014.

    10. Thide, B., H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Phys. Rev. Lett., Vol. 99, 087701, 2007.

    11. Deng, C., W. Chen, Z. Zhang, Y. Li, and Z. Feng, "Generation of OAM radio waves using circular vivaldi antenna array," Int. J. Antenn. Propag., Vol. 2013, 847859, 2013.

    12. Edfors, O. and A. J. Johansson, "Is orbital angular momentum, OAM) based radio communication an unexploited area?," IEEE Trans. Antenn. Propag., Vol. 60, 1126, 2012.

    13. Gurevich, A. G. and G. A. Melkov, Magnetic Oscillations and Waves, CRC Press, New York, 1996.

    14. Kamenetskii, E. O., "Vortices and chirality of magnetostatic modes in quasi-2D ferrite disc particles," J. Phys. A: Math. Theor., Vol. 40, 6539, 2007.

    15. Kamenetskii, E. O., "Helical-mode magnetostatic resonances in small ferrite particles and singular metamaterials," J. Phys.: Condens. Matter, Vol. 22, 486005, 2010.

    16. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: Magnetic-dipolar-mode vortex polaritons," Phys. Rev. A, Vol. 84, 023836, 2011.

    17. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Microwave magnetoelectric fields and their role in the matter-field interaction," Phys. Rev. E, Vol. 87, 023201, 2013.

    18. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological-phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles," J. Opt., Vol. 14, 125602, 2012.

    19. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological properties of microwave magnetoelectric fields," Phys. Rev. E, Vol. 89, 023207, 2014.

    20. Kamenetskii, E. O., E. Hollander, R. Joffe, and R. Shavit, "Unidirectional magnetoelectric-field multiresonant tunneling," J. Opt., Vol. 17, 025601, 2015.

    21. Kamenetskii, E. O., M. Berezin, and R. Shavit, "Microwave magnetoelectric fields: helicities and reactive power flows," Appl. Phys. B: Lasers Opt., Vol. 121, 31, 2015.

    22. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Quantum confinement of magnetic-dipolar oscillations in ferrite discs," J. Phys.: Condens. Matter, Vol. 17, 2211, 2005.

    23. Fano, U., "Effects of configuration interaction on intensities and phase shifts," Phys. Rev., Vol. 124, 1866, 1961.

    24. Kamenetskii, E. O., G. Vaisman, and R. Shavit, "Fano resonances of microwave structures with embedded magneto-dipolar quantum dots," J. App. Phys., Vol. 114, 173902, 2013.

    25. Fiebig, M., "Revival of the magnetoelectric effect," J. Phys. D, Vol. 38, R123, 2005.

    26. Mostovoy, M., "Ferroelectricity in spiral magnets," Phys. Rev. Lett., Vol. 96, 067601, 2006.

    27. Tokura, Y., S. Seki, and N. Nagaosa, "Multiferroics of spin origin," Rep. Prog. Phys., Vol. 77, 076501, 2014.

    28. Shindou, R., J.-I. Ohe, R. Matsumoto, S. Murakami, and E. Saitoh, "Chiral spin-wave edge modes in dipolar magnetic thin films," Phys. Rev. B, Vol. 87, 174402, 2013.

    29. Shindou, R. and J.-I. Ohe, "Magnetostatic wave analog of integer quantum Hall state in patterned magnetic films," Phys. Rev. B, Vol. 89, 054412, 2014.