Vol. 68

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-06-14

Extended Transmission-Line Modelling of Inset-Fed Reconfigurable Rectangular Microstrip Antennas

By Budhaditya Majumdar and Karu P. Esselle
Progress In Electromagnetics Research B, Vol. 68, 123-140, 2016
doi:10.2528/PIERB16041502

Abstract

An extended transmission-line model is presented for an inset-fed rectangular microstrip patch antenna. The transmission-line model agrees to the cos4 impedance variation for inset-fed microstrip antennas with an addition of a corrective extended feed length upto the inner radiating edge. Verification of the model's complex reflection coefficient is concluded with good agreements with measured results. Further extension of the transmission-line model with for or more thin shorting post connected to multiple varactor diodes have been conducted. Fourty two test cases across five independent antenna designs have been worked upon. Results obtained using the transmission-line model are compared with those obtained with a 3D full-wave solver and measurements. In 69% of the test cases, the transmission-line models have less than 3% deviation to the measured or simulated results. 41% of them have less than 1% deviation. For the first two antennas, both simulated and measured results were compared with the transmission-line model. For the rest of three, results from the transmission-line model were compared to the simulated ones.

Citation


Budhaditya Majumdar and Karu P. Esselle, "Extended Transmission-Line Modelling of Inset-Fed Reconfigurable Rectangular Microstrip Antennas," Progress In Electromagnetics Research B, Vol. 68, 123-140, 2016.
doi:10.2528/PIERB16041502
http://www.jpier.org/PIERB/pier.php?paper=16041502

References


    1. Munson, R., "Conformal microstrip antennas and microstrip phased arrays," IEEE Trans. Antennas Propag., Vol. 22, No. 1, 74-78, 1974.
    doi:10.1109/TAP.1974.1140723

    2. Derneryd, A. G., "Linearly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 24, No. 6, 846-851, 1976.
    doi:10.1109/TAP.1976.1141445

    3. Derneryd, A. G., "A theoretical investigation of the rectangular microstrip antenna element," IEEE Trans. Antennas Propag., Vol. 26, No. 4, 532-535, 1978.
    doi:10.1109/TAP.1978.1141890

    4. Carver, K. R. and J. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, 1981.
    doi:10.1109/TAP.1981.1142523

    5. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.

    6. Ghatak, R. and M. Pal, "Revisiting relations for modeling the input resistance of a rectangular microstrip antenna [Antenna Designer's Notebook]," IEEE Antennas Propag. Mag., Vol. 57, No. 4, 116-119, 2015.
    doi:10.1109/MAP.2015.2453887

    7. Ying, H., D. R. Jackson, J. T. Williams, S. A. Long, and V. R. Komanduri, "Characterization of the input impedance of the inset-fed rectangular microstrip antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3314-3318, 2008.
    doi:10.1109/TAP.2008.929532

    8. Basilio, L. I., M. A. Khayat, J. T. Williams, and S. A. Long, "The dependence of the input impedance on feed position of probe and microstrip line-fed patch antennas," IEEE Trans. Antennas Propag., Vol. 49, No. 1, 45-47, 2001.
    doi:10.1109/8.910528

    9. Garvin, C., R. Munson, L. Ostwald, and K. Schroeder, "Missile base mounted microstrip antennas," IEEE Trans. Antennas Propag., Vol. 25, No. 5, 604-610, 1977.
    doi:10.1109/TAP.1977.1141655

    10. Kan, H. K. and R. B. Waterhouse, "Size reduction technique for shorted patches," Electron. Lett., Vol. 35, No. 12, 948-949, 1999.
    doi:10.1049/el:19990703

    11. Reed, S., L. Desclos, C. Terret, and S. Toutain, "Patch antenna size reduction by means of inductive slots," Microw. Opt. Technol. Lett., Vol. 29, No. 2, 79-81, 2001.
    doi:10.1002/mop.1089

    12. Desclos, L., Y. Mahe, S. Reed, G. Poilasne, and S. Toutai, "Patch antenna size reduction by combining inductive loading and short-points technique," Microw. Opt. Technol. Lett., Vol. 30, No. 6, 385-386, 2001.
    doi:10.1002/mop.1322

    13. Schaubert, D., F. Farrar, A. Sindoris, and S. Hayes, "Microstrip antennas with frequency agility and polarization diversity," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 118-123, 1981.
    doi:10.1109/TAP.1981.1142546

    14. Sengupta, D. L., "Resonant frequency of a tunable rectangular patch antenna," Electron. Lett., Vol. 20, No. 15, 614-615, 1984.
    doi:10.1049/el:19840423

    15. Lan, G. L. and D. L. Sengupta, "Tunable circular patch antennas," Electron. Lett., Vol. 21, No. 22, 1022-1023, 1985.
    doi:10.1049/el:19850725

    16. Garg, R., et al., Microstrip Antenna Design Handbook, Artech House Inc., 2001.

    17. Chakravarty, T. and A. De, "Design of tunable modes and dual-band circular patch antenna using shorting posts," IEE P. --- Microw. Anten. P., Vol. 146, No. 3, 224-228, 1999.
    doi:10.1049/ip-map:19990629

    18. Chakravarty, T. and A. De, "Resonant frequency of a shorted circular patch with the use of a modified impedance expression for a metallic post," Microw. Opt. Technol. Lett., Vol. 33, No. 4, 252-256, 2002.
    doi:10.1002/mop.10290

    19. Ghosh, D., et al., "Physical and quantitative analysis of compact rectangular microstrip antenna with shorted non-radiating edges for reduced cross-polarized radiation using modified cavity model," IEEE Antennas and Propagation Magazine, Vol. 56, No. 4, 61-72, 2014.
    doi:10.1109/MAP.2014.6931658

    20. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3G IMT- 2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.
    doi:10.2528/PIER03100901

    21. Majumdar, B. and K. P. Esselle, "A dual-mode reconfigurable patch antenna and an extended transmission line model," Microw. Opt. Technol. Lett., Vol. 58, No. 1, 57-61, 2016.
    doi:10.1002/mop.29497

    22. Majumdar, B. and K. P. Esselle, "Modelling the effect of a thin shorting post in an arbitrary position along the outer radiating edge of a rectangular patch antenna," Proc. Intnl. Symp. Antennas Propag. No. ISAP 2015), 84-86, Hobart, Australia, Nov. 2015.

    23. Chen, W.-F., D. Yu, and S.-X. Gong, "An omnidirectional triple-band circular patch antenna based on open elliptical-ring slots and the shorting vias," Progress In Electromagnetics Research, Vol. 150, 197-203, 2015.
    doi:10.2528/PIER15010201

    24. Biswas, M. and A. Mandal, "Experimental and theoretical investigation to predict the e®ect of superstrate on the impedance, bandwidth, and gain characteristics for a rectangular patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 16, 2093-2109, 2015.
    doi:10.1080/09205071.2015.1039072

    25. Richards, W., L. Yuen, and D. Harrison, "An improved theory for microstrip antennas and applications," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 38-46, 1981.
    doi:10.1109/TAP.1981.1142524

    26. Haskins, P. M., P. S. Hall, and J. S. Dahele, "Polarisation-agile active patch antenna," Electron. Lett., Vol. 30, No. 2, 98-99, 1994.
    doi:10.1049/el:19940072

    27. Haskins, P. M. and J. S. Dahele, "Varactor-diode loaded passive polarisation-agile patch antenna," Electron. Lett., Vol. 30, No. 13, 1074-1075, 1994.
    doi:10.1049/el:19940720

    28. Haskins, P. M. and J. S. Dahele, "Four-element varactor diode loaded polarisation-agile microstrip antenna array," Electron. Lett., Vol. 33, No. 14, 1186-1187, 1997.
    doi:10.1049/el:19970801

    29. Haskins, P. M., P. S. Hall, and J. S. Dahele, "Active patch antenna element with diode tuning," Electron. Lett., Vol. 27, No. 20, 1846-1848, 1991.
    doi:10.1049/el:19911147

    30. Waterhouse, R. B., "Modelling of Schottky-Barrier diode loaded microstrip array elements," Electron. Lett., Vol. 28, No. 19, 1799-1801, 1992.
    doi:10.1049/el:19921147

    31. Waterhouse, R. B. and N. V. Shuley, "Dual frequency microstrip rectangular patches," Electron. Lett., Vol. 28, No. 7, 606-607, 1992.
    doi:10.1049/el:19920382

    32. Waterhouse, R. B. and N. V. Shuley, "Scan performance of infinite arrays of microstrip patch elements loaded with varactor diodes," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1273-1280, 1993.
    doi:10.1109/8.247754

    33. Waterhouse, R. B. and N. V. Shuley, "Full characterisation of varactor-loaded, probe-fed, rectangular, microstrip patch antennas," IEE P. --- Microw. Anten. P., Vol. 141, No. 5, 367-373, 1994.
    doi:10.1049/ip-map:19941305

    34. Chakravarty, T., S. K. Sanyal, and A. De, "Resonant modes of circular microstrip radiator loaded with varactor diode," Radio Sci., Vol. 42, No. 4, RS4024, 2007.
    doi:10.1029/2006RS003577

    35. Waterhouse, R. B., "The use of shorting posts to improve the scanning range of probe-fed microstrip patch phased arrays," IEEE Trans. Antennas Propag., Vol. 44, No. 3, 302-309, 1996.
    doi:10.1109/8.486297

    36. Wei, W.-B., Q.-Z. Liu, Y.-Z. Yin, and H.-J. Zhou, "Reconfigurable microstrip patch antenna with switchable polarization," Progress In Electromagnetics Research, Vol. 75, 63-68, 2007.
    doi:10.2528/PIER07053002

    37. Wang, K.-L. and Y.-F. Lin, "Small broadband rectangular microstrip antenna with chip-resistor loading," Electron. Lett., Vol. 33, No. 19, 1593-1594, 1997.
    doi:10.1049/el:19971111

    38. Hum, S. V., J. Z. Chu, R. H. Johnston, and M. Okoniewski, "Efficiency of a resistively loaded microstrip patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 22-25, 2003.
    doi:10.1109/LAWP.2003.810777