Vol. 69

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-09-14

Utilization of Riemann-Silberstein Vectors in Electromagnetics

By Igor V. Belkovich and Boris L. Kogan
Progress In Electromagnetics Research B, Vol. 69, 103-116, 2016
doi:10.2528/PIERB16051809

Abstract

Electromagnetic field modal expansion is traditionally an effective technique for solving Maxwell's Equations for numerous high-frequency engineering problems. In this paper, an alternative form of electromagnetic field representation is described. It is based on the Riemann-Silberstein vectors, which are a linear combination of the electric and magnetic field vectors. Utilizing such combination in homogeneous space, Maxwell's Equations are converted into a system of two independent equations. Under these circumstances, each vector describes the total electromagnetic field of an ideal circular polarization. Electromagnetic fields are simply expressed in the form of the Riemann-Silberstein vectors using the helical coordinate system and special functions, which form a set of generalized spherical harmonics. The new representation of vector spherical harmonics differs in simplicity and symmetry while having a more physically apparent expression. The amount of computational work is reduced due to the initial independence of the Riemann-Silberstein vectors. The purpose of this paper is to show the efficiency of a new approach that is based on Riemann-Silberstein vector field representation and spherical wave expansion.

Citation


Igor V. Belkovich and Boris L. Kogan, "Utilization of Riemann-Silberstein Vectors in Electromagnetics," Progress In Electromagnetics Research B, Vol. 69, 103-116, 2016.
doi:10.2528/PIERB16051809
http://www.jpier.org/PIERB/pier.php?paper=16051809

References


    1. Beltrami, E., "Considerazioni idrodinamiche," Rendiconti del reale Instituto Lombardo, t.XXII, 121-130, Milano, 1889.

    2. Gromeka, I., "Some cases of incompressible fluids motion," Scientific notes of the Kazan University, 1881, I. Gromeka, Collected works, 76-148, AN USSR, Moscow, 1952 (in Russian).

    3. Silberstein, L., "Elektromagnetische Grundgleichungen in bivectorieller Behandlung, (Basic electromagnetic equations in bivectorial form)," Ann. D. Phys., Vol. 327, 876-880, 1907.
    doi:10.1002/andp.19073270313

    4. Weber, H., "Die parttiellen Di®erential-Gleichungen der mathematischen Physik nach Riemann's Vorlesungen bearbeitet von Heinrich Weber (Braunschweig: Friedrich Vieweg und Sohn),", 348, 1901.

    5. Bialynicki-Birula, I., "Photon wave function," Progress in Optics, Vol. 36, 245-294, 1996.
    doi:10.1016/S0079-6638(08)70316-0

    6. Bialynicki-Birula, I., "The role of the Riemann-Silberstein vector in classical and quantum theories of electromagnetism," Journal of Physics A Mathematical and Theoretical, Vol. 46, No. 15, Nov. 2012.

    7. Von Laue, M., Die RelativitÄatstheorie. Zweiter Band: Die Allgemeine RelativitÄatstheorie Und Einsteins Lehre Von Der Schwerkraft, Friedr. Vieweg & Sohn, Braunschweig, 1921 and 1923.

    8. Minkowski, H., "Die Grundgleichungen fur die elektromagnetischen Vorgange in bewegten Korpern," Nachrichten von der Gesellschaft der Wissenschaften zu GÄottingen, Mathematisch-Physikalische Klasse, 53-111, 1908.

    9. Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-motion, University Press, Cambridge, 1915.

    10. Lewin, L., Theory of Waveguides, Butterworth and Co Ltd., London, 1975.

    11. Rumsey, V. H., "A new way of solving Maxwell's equations," IRE Transactions on Antennas and Propagation, 461-465, Sep. 1961.
    doi:10.1109/TAP.1961.1145047

    12. Lakhtakia, A., "Time-dependent Beltrami fields in material continua: The Beltrami-Maxwell postulates," International Journal of Infrared and Millimeter Waves, Vol. 15, No. 2, 369-394, 1994.
    doi:10.1007/BF02096247

    13. Lakhtakia, A., Beltrami Fields in Chiral Media, World Scientific, River Edge, N.Y., Singapore, 1994.
    doi:10.1142/2031

    14. Lakhtakia, A., "Vector spherical wavefunctions for orthorhombic dielectric-magnetic material with gyrotropic-like magnetoelectric properties," Journal of Optics, Vol. 41, No. 4, 201-213, Dec. 2012.
    doi:10.1007/s12596-012-0084-y

    15. Kogan, B. L., Electromagnetic waves of a circular polarization in antenna theory (In Russian), Doctor of technical science dissertation, Dept. of Antennas and Wave Propagation, Moscow Power Engineering Institute, Moscow, Russia, 2004.

    16. Gelfand, I. M., R. A. Minlos, and Z. Y. Shapiro, Representations of the Rotation and Lorentz Group and Their Applications, Pergamon Press, Oxford, 1963.

    17. Vilenkin, N. Ya., Special Functions and the Theory of Group Representations (Translations of Mathematical Monographs), Vol. 22, Providence, RI, 1968.

    18. Varshalovich, D. A., A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore, 1988.
    doi:10.1142/0270

    19. Kogan, B. L., "About vector spherical harmonics of circular polarization (In Russian)," Antenny, No. 2, 59-63, 2004.

    20. Kogan, B. L., "Application of Faraday's vectors in antenna theory," 1st Eur. Conf. Ant. and Propag. (EuCAP), Nice, France, Nov. 2006.