Vol. 69

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-09-18

The Gabor Frame as a Discretization for the 2D Transverse-Electric Scattering-Problem Domain Integral Equation

By Roeland J. Dilz and Martijn C. van Beurden
Progress In Electromagnetics Research B, Vol. 69, 117-136, 2016
doi:10.2528/PIERB16061406

Abstract

We apply the Gabor frame as a projection method to numerically solve a 2D transverse electric-polarized domain-integral equation for a homogeneous medium. Since the Gabor frame is spatially as well as spectrally very well convergent, it is convenient to use for solving a domain integral equation. The mixed spatial and spectral nature of the Gabor frame creates a natural and fast way to Fourier transform a function. In the spectral domain we employ a coordinate scaling to smoothen the branchcut found in the Green function. We have developed algorithms to perform multiplication and convolution efficiently, scaling as O(NlogN) on the number of Gabor coefficients, yielding an overall algorithm that also scales as O(NlogN).

Citation


Roeland J. Dilz and Martijn C. van Beurden, "The Gabor Frame as a Discretization for the 2D Transverse-Electric Scattering-Problem Domain Integral Equation," Progress In Electromagnetics Research B, Vol. 69, 117-136, 2016.
doi:10.2528/PIERB16061406
http://www.jpier.org/PIERB/pier.php?paper=16061406

References


    1. Basharin, A. A., M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, "Dielectric metamaterials with toroidal dipolar response," Physical Review X, 2015.

    2. Ribot, C., P. Lalanne, M.-S.-L. Lee, B. Loiseaux, and J.-P. Huignard, "Analysis of blazed diffractive optical elements formed with artificial dielectrics," Jounal of the Optical Society of America A, Vol. 24, No. 12, 3819-3826, 2007.
    doi:10.1364/JOSAA.24.003819

    3. Glaser, T., S. Schroter, H. Bartelt, H.-J. Fuchs, and E.-B. Kley, "Diffractive optical isolator made of high-efficiency dielectric gratings only," Applied Optics, Vol. 41, No. 18, 3558-3566, 2002.
    doi:10.1364/AO.41.003558

    4. Dzibrou, D. O., J. J. G. M. van der Tol, and M. K. Smit, "Tolerant polarization converter for ingaaspinp photonic integrated circuits," Optics Letters, Vol. 38, No. 18, 3482-3484, 2013.
    doi:10.1364/OL.38.003482

    5. Wang, L., Y. Wang, and X. Zhang, "Embedded metallic focus grating for silicon nitride waveguide with enhanced coupling and directive radiation," Optical Express, Vol. 20, No. 16, 2012.

    6. Shlager, K. L. and J. B. Schneider, "A selective survey of the finite-difference time-domain literature," IEEE Antennas and Propagation Magazine, Vol. 37, No. 4, 1995.
    doi:10.1109/74.414731

    7. Bengzon, F. and M. G. Larson, The Finite Element Method: Theory, Implementation, and Applications, Springer, 2013.
    doi:10.1007/978-3-642-33287-6

    8. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
    doi:10.2528/PIER00080103

    9. Zwamborn, P. and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 9, 1992.
    doi:10.1109/22.156602

    10. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
    doi:10.1029/96RS02504

    11. Philips, J. R. and J. K. White, "Efficient capacitiance extraction of 3D structures using generalized precorrected FFT methods," IEEE Transactions on Microwave Theory and Techniques, 253-256, 1994.

    12. Botten, I. C., M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, "The dielectric Lamellar diffraction grating," Optica Acta, Vol. 28, No. 3, 413-428, 1981.
    doi:10.1080/713820571

    13. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," Jounal of the Optical Society of America, Vol. 71, No. 7, 1981.

    14. Chandezon, J., D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," Journal of Optics, Vol. 11, 235-241, 1980.
    doi:10.1088/0150-536X/11/4/005

    15. Poyedinchuk, A. Y., Y. A. Tuchkin, N. P. Yashina, J. Chandezon, and G. Granet, "C-method: Several aspects of spectral theorry of gratings," Progress In Electromagnetics Research, Vol. 59, 113-149, 2006.
    doi:10.2528/PIER05050901

    16. Van Beurden, M. C., "A spectral volume integral equation method for arbitrary bi-periodic gratings with explicit Fourier factorization," Progress In Electromagnetics Research B, Vol. 36, 133-149, 2012.
    doi:10.2528/PIERB11100307

    17. Pisarenco, M., J. Maubach, I. Setija, and R. Mattheij, "Formulation for simulation of scattering from finite structures," Journal of The Optical Society of America A, 2010.

    18. Bastiaans, M. J., "A sampling theorem for the complex spectrogram, and Gabor's expansion of a signal in Gaussian elementary signals," Optical Engineering, Vol. 20, No. 4, 594-598, 1981.
    doi:10.1117/12.7972768

    19. Bastiaans, M. J., Gabor's expansion and the Zak transform for continuous-time and discrete-time signals: Critical sampling and rational oversampling, Eindhoven University of Technology, Eindhoven, 1995.

    20. Feichtinger, H. G. and T. Strohmer, Gabor Analysis and Algorithms: Theory and Applications, Birkhauser, 1998.
    doi:10.1007/978-1-4612-2016-9

    21. Battle, G., "Heisenberg proof of the Balian-Low theorem," Letters in Mathematical Physics, Vol. 15, 175-177, 1988.
    doi:10.1007/BF00397840

    22. Benedetto, J. J., C. Heil, and D. F. Walnut, "Differentiation and the Balian-Low theorem," The Journal of Fourier Analysis and Applications, Vol. 1, No. 4, 355-402, 1995.
    doi:10.1007/s00041-001-4016-5

    23. Sondergaard, P. L., Finite discrete Gabor analysis, PhD Thesis, Institut for Matematik, DTU, 2007.

    24. Maciel, J. J. and L. B. Felsen, "Discretized Gabor-based beam algorithm for time-harmonic radiation from two-dimensional truncated planar aperture distributions --- I: Formulation and solution," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 12, 1751-1759, 2002.
    doi:10.1109/TAP.2002.807419

    25. Maciel, J. J. and L. B. Felsen, "ctime-harmonic radiation from two-dimensional truncated planar aperture distributions --- II: Asymptotics and numerical tests," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 12, 1760-1768, 2002.
    doi:10.1109/TAP.2002.807381

    26. Einziger, P. D., S. Raz, and M. Saphira, "Gabor representation and aperture theory," Journal of Journal of the Optical Society of America, Vol. 3, No. 4, 508-522, 1986.
    doi:10.1364/JOSAA.3.000508

    27. Maciel, J. J. and L. B. Felsen, "Systematic study of fields due to extended apertures by Gaussian discretization," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 7, 884-892, 1989.
    doi:10.1109/8.29383

    28. Daubechies, I., S. Jaffard, and J.-L. Journe, "A simple Wilson orthonormal basis with exponential decay," SIAM Journal on Mathematical Analysis, Vol. 22, No. 2, 554-572, 1991.
    doi:10.1137/0522035

    29. Floris, S. J. and B. P. de Hon, "Electromagnetic field expansion in a Wilson basis," Proceedings of the 42nd European Microwave Conference (EuMC), Amsterdam, NL, Oct. 29-Nov. 1, 2012.

    30. Lugara, D. and C. Letrou, "Printed antennas analysis by a Gabor frame-based method of moments," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 11, 1588-1597, 2002.
    doi:10.1109/TAP.2002.804023

    31. Jackson, J. D., "Classical Electrodynamics," Wiley, 2007.

    32. Szego, G., "Orthogonal polynomials," Royal American Mathematical Society, 1975.

    33. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., 1989.

    34. Burger, S., L. Zschiedrich, J. Pomplun, and F. Schmidt, "Finite-element based electromagnetic field simulations: Benchmark results for isolated structures," Proc. SPIE, Vol. 8880, 2013.