Vol. 69

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-09-08

Design and Evaluation of an Inductive Powering Unit for Implantable Medical Devices Using GPU Computing

By Arseny Anatolievich Danilov, Eduard Adipovich Mindubaev, and Sergey Vasilyevich Selishchev
Progress In Electromagnetics Research B, Vol. 69, 61-73, 2016
doi:10.2528/PIERB16062805

Abstract

Nowadays inductive powering has become a widely spread technique in existing and emerging implanted medical devices (IMD). The geometry of coils couple plays a key role in the design, optimization and evaluation of a biomedical inductive powering unit (IPU). We have proposed a relatively fast method for an execution of these procedures, which is based on a mutual induction calculation using GPU parallel computing. Generally, our approach is to calculate mutual inductance as a function of uncontrolled (axial distance, lateral distance, inclination) and controlled (coils radii, turns numbers, distance between turns) geometric parameters of a coil couple. Calculated geometric functions in its turn are used in the design and optimization procedure to evaluate an IPU performance (e.g., load power). Achieved time gain of the GPU calculations in comparison with the host CPU computing is up to 80 for sequential summation and up to 8 for parallel computing. Also, it is shown that precision of our method is comparable to the precision of existing electromagnetic field solvers, and at the same time, computation time is substantially less (time gain is about 7...8 for 2D case and about 100 and higher for 3D case). Additionally, we have verified our method experimentally and shown that results of the calculations are accurate enough to predict real IPU performance. Finally, we have given an example of an IPU design optimization using geometric functions calculated with the help of the proposed method.

Citation


Arseny Anatolievich Danilov, Eduard Adipovich Mindubaev, and Sergey Vasilyevich Selishchev, "Design and Evaluation of an Inductive Powering Unit for Implantable Medical Devices Using GPU Computing," Progress In Electromagnetics Research B, Vol. 69, 61-73, 2016.
doi:10.2528/PIERB16062805
http://www.jpier.org/PIERB/pier.php?paper=16062805

References


    1. Bocan, K. and E. Sejdic, "Adaptive transcutaneous power transfer to implantable devices: A state of the art review," Sensors, Vol. 16, No. 3, 393, 2016.
    doi:10.3390/s16030393

    2. Lenaerts, B. and R. Puers, Omnidirectional Inductive Powering for Biomedical Implants, Springer, Netherlands, 2009.
    doi:10.1007/978-1-4020-9075-2

    3. Yakovlev, A., S. Kim, and A. Poon, "Implantable biomedical devices: Wireless powering and communication," IEEE Commun. Mag., Vol. 50, No. 4, 152-159, 2012.
    doi:10.1109/MCOM.2012.6178849

    4. Zeng, F.-G., S. Rebscher, W. Harrison, X. Sun, and H. Feng, "Cochlear implants: System design, integration and evaluation," IEEE Rev. Biomed. Eng., Vol. 1, 115-142, 2008.
    doi:10.1109/RBME.2008.2008250

    5. Bradley, K., "The technology: The anatomy of a spinal cord and nerve root stimulator: The lead and the power source," Pain Med., Vol. 7, No. SUPPL 1, S27-S34, 2006.
    doi:10.1111/j.1526-4637.2006.00120.x

    6. Zhou, D. and E. Greenbaum, Implantable Neural Prostheses 1. Devices and Applications, Springer-Verlag, New York, 2009.
    doi:10.1007/978-0-387-98120-8_2

    7. Weiland, J., W. Liu, and M. Humayun, "Retinal prosthesis," Annu. Rev. Biomed. Eng., Vol. 7, 361-401, 2005.
    doi:10.1146/annurev.bioeng.7.060804.100435

    8. Li, X., Y. Yang, and Y. Gao, "Visual prosthesis wireless energy transfer system optimal modeling," Biomed. Eng. Online, Vol. 13, No. 1, 2014.

    9. Baumgart, R., P. Thaller, S. Hinterwimmer, M. Krammer, T. Hierl, and W. Mutschler, "A fully implantable, programmable distraction nail (fitbone) — New perspectives for corrective and reconstructive limb surgery in practice of intramedullary locked nails," Practice of Intramedullary Locked Nails, 189-198, Springer, Berlin, Heidelberg, 2006.

    10. Bergmann, G., F. Graichen, J. Dymke, A. Rohlmann, G. N. Duda, and P. Damm, "High-tech hip implant for wireless temperature measurements in vivo," PLoS One, Vol. 7, No. 8, e43489, 2012.
    doi:10.1371/journal.pone.0043489

    11. Wang, J., J. Smith, and P. Bonde, "Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability," Ann. Thorac. Surg., Vol. 97, No. 4, 1467-1474, 2014.
    doi:10.1016/j.athoracsur.2013.10.107

    12. Slaughter, M. and T. Myers, "Transcutaneous energy transmission for mechanical circulatory support systems: history, current status, and future prospects," J. Cardiac Surg., Vol. 25, No. 4, 484-489, 2010.
    doi:10.1111/j.1540-8191.2010.01074.x

    13. Danilov, A. A., G. P. Itkin, and S. V. Selishchev, "Progress in methods for transcutaneous wireless energy supply to implanted ventricular assist devices," Biomed. Eng., Vol. 44, No. 4, 125-129, 2010.
    doi:10.1007/s10527-010-9169-6

    14. Puers, R. and G. Vandervoorde, "Recent progress on transcutaneous energy transfer for total artificial heart System," Artif. Organs, Vol. 25, No. 5, 400-405, 2001.
    doi:10.1046/j.1525-1594.2001.025005400.x

    15. Leung, H. Y., D. M. Budgett, and A. P. Hu, "Minimizing power loss in air-cored coils for TET heart pump systems," IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 1, No. 8, 412-419, 2011.
    doi:10.1109/JETCAS.2011.2164974

    16. Choi, S.-W. and M.-H. Lee, "Coil-capacitator circuit design of a transcutaneous energy transmission system to deliver stable electric power," ETRI J., Vol. 30, No. 6, 844-849, 2008.
    doi:10.4218/etrij.08.0108.0321

    17. Bock, D., A. Marschilok, K. Takeuchi, and E. Takeuchi, "Batteries used to power implantable biomedical devices," Electrochim. Acta, Vol. 84, 155-164, 2012.
    doi:10.1016/j.electacta.2012.03.057

    18. Amar, A., A. Kouki, and H. Cao, "Power approaches for implantable medical devices," Sensors, Vol. 15, No. 11, 28889-28914, 2015.
    doi:10.3390/s151128889

    19. Larsson, B., H. Elmqvist, L. Ryden, and H. Shueller, "Lessons from the first patient with an implanted pacemaker: 1958–2001," PACE, Vol. 26, No. 1, Pt. 1, 114-124, 2003.
    doi:10.1046/j.1460-9592.2003.00162.x

    20. Schuder, J. C., "Powering an artificial heart: Birth of the inductively coupled-radio frequency system in 1960," Artif. Organs, Vol. 26, No. 11, 909-915, 2002.
    doi:10.1046/j.1525-1594.2002.07130.x

    21. Jegadeesan, R. and Y.-X. Guo, "Topology selection and efficiency improvement of inductive power links," IEEE T. Antenn. Propag., Vol. 60, No. 10, 4846-4854, 2012.
    doi:10.1109/TAP.2012.2207325

    22. Hu, L., Y. Fu, X. Ruan, H. Xie, and X. Fu, "Detecting malposition of coil couple for transcutaneous energy transmission," ASAIO J., Vol. 62, No. 1, 56-62, 2016.
    doi:10.1097/MAT.0000000000000289

    23. Danilov, A. A. and E. A. Mindubaev, "Influence of angular coil displacements on effectiveness of wireless transcutaneous inductive energy transmission," Biomed. Eng., Vol. 49, No. 3, 171-173, 2015.
    doi:10.1007/s10527-015-9523-9

    24. Friedmann, J., F. Groedl, and R. Kennel, "A novel universal control scheme for transcutaneous energy transfer (TET) applications," IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 3, No. 1, 296-305, 2015.

    25. Ghovanloo, M., "An overview of the recent wideband transcutaneous wireless communication techniques," 33rd Annual International Conference of the IEEE EMBS, 5864-5867, 2011.

    26. Zierhofer, C. M. and E. S. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils," IEEE Trans. Biomed. Eng., Vol. 43, No. 7, 708-714, 1996.
    doi:10.1109/10.503178

    27. Jow, U.-M. and M. Ghovanloo, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Transactions on Biomedical Circuits and Systems, Vol. 1, No. 3, 193-202, 2007.
    doi:10.1109/TBCAS.2007.913130

    28. Danilov, A. A., E. A. Mindubaev, and S. V. Selishchev, "Space-frequency approach to design of displacement tolerant transcutaneous energy transfer system," Progress In Electromagnetics Research M, Vol. 44, 91-100, 2015.
    doi:10.2528/PIERM15082006

    29. Babic, S. and C. Akyel, "New formulas for mutual inductance and axial magnetic force between magnetically coupled coils: Thick circular coil of the rectangular cross-section-thin disk coil (pancake)," IEEE T. Magn., Vol. 49, No. 7, 860-868, 2013.
    doi:10.1109/TMAG.2012.2212909

    30. Babic, S., F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R. Ravaud, "New formulas for mutual inductance and axial magnetic force between a thin wall solenoid and a thick circular coil of rectangular cross-section," IEEE T. Magn., Vol. 47, No. 8, 2034-2044, 2011.
    doi:10.1109/TMAG.2011.2125796

    31. Babic, S. I. and C. Akyel, "Calculating mutual inductance between circular coils with inclined axes in air," IEEE T. Magn., Vol. 44, No. 7, 1743-1750, 2008.
    doi:10.1109/TMAG.2008.920251

    32. Conway, J. T., "Inductance calculations for noncoaxial coils using Bessel functions," IEEE T. Magn., Vol. 43, No. 3, 1023-1034, 2007.
    doi:10.1109/TMAG.2006.888565

    33. Conway, J. T., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE T. Magn., Vol. 44, No. 4, 453-462, 2008.
    doi:10.1109/TMAG.2008.917128

    34. Conway, J. T., "Exact solutions for the mutual inductance of circular coils and elliptic coils," IEEE T. Magn., Vol. 48, No. 1, 81-94, 2012.
    doi:10.1109/TMAG.2011.2161768

    35. Conway, J. T., "Analytical solutions for the self and mutual inductances of concentric coplanar disk coils," IEEE T. Magn., Vol. 49, No. 3, 1135-1142, 2013.
    doi:10.1109/TMAG.2012.2229287

    36. Babic, S. and C. Akyel, "Magnetic force between inclined circular filaments placed in any desired position," IEEE T. Magn., Vol. 48, No. 1, 69-80, 2012.
    doi:10.1109/TMAG.2011.2165077

    37. Babic, S., F. Sirois, C. Akyel, and C. Girardi, "Mutual inductance calculation between circular filaments arbitrarily positioned in space: Alternative to Grover’s formula," IEEE T. Magn., Vol. 46, No. 9, 3591-3600, 2010.
    doi:10.1109/TMAG.2010.2047651

    38. Soma, M., D. C. Galbraith, and L. W. White, "Radio-frequency coils in implantable devices: Misalignment analysis and design procedure," IEEE Trans. Biomed. Eng., Vol. BME-34, No. 4, 276-282, 1987.
    doi:10.1109/TBME.1987.326088

    39. Kalantarov, P. L., "Inductance Calculations," National Power Press, 1955.

    40. Krasteva, V. T., S. P. Papazov, and I. K. Daskalov, "Magnetic stimulation for non-homogeneous biological structure," Biomed. Eng. Online, Vol. 1, 2002.

    41. Ahma, L., M. Ibrani, and E. Hamiti, "Computation of SAR distribution in a human exposed to mobile phone electromagnetic fields," PIERS Proceedings, 1580-1582, Xi’an, China, March 22–26, 2010.

    42. Ke, L., G. Yan, S. Yan, Z. Wang, and D. Liu, "Improvement of the coupling factor of Litz-wire coil pair with ferrite substrate for transcutaneous energy transfer system," Progress In Electromagnetics Research M, Vol. 39, 41-52, 2014.
    doi:10.2528/PIERM14080604

    43. Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, "GPU computing," P. IEEE, Vol. 96, No. 5, 879-889, 2008.
    doi:10.1109/JPROC.2008.917757

    44. Nickolls, J. and W. J. Dally, "The GPU computing era," IEEE Micro., Vol. 30, No. 2, 56-69, 2010.
    doi:10.1109/MM.2010.41