Vol. 69
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-09-08
Design and Evaluation of an Inductive Powering Unit for Implantable Medical Devices Using GPU Computing
By
Progress In Electromagnetics Research B, Vol. 69, 61-73, 2016
Abstract
Nowadays inductive powering has become a widely spread technique in existing and emerging implanted medical devices (IMD). The geometry of coils couple plays a key role in the design, optimization and evaluation of a biomedical inductive powering unit (IPU). We have proposed a relatively fast method for an execution of these procedures, which is based on a mutual induction calculation using GPU parallel computing. Generally, our approach is to calculate mutual inductance as a function of uncontrolled (axial distance, lateral distance, inclination) and controlled (coils radii, turns numbers, distance between turns) geometric parameters of a coil couple. Calculated geometric functions in its turn are used in the design and optimization procedure to evaluate an IPU performance (e.g., load power). Achieved time gain of the GPU calculations in comparison with the host CPU computing is up to 80 for sequential summation and up to 8 for parallel computing. Also, it is shown that precision of our method is comparable to the precision of existing electromagnetic field solvers, and at the same time, computation time is substantially less (time gain is about 7...8 for 2D case and about 100 and higher for 3D case). Additionally, we have verified our method experimentally and shown that results of the calculations are accurate enough to predict real IPU performance. Finally, we have given an example of an IPU design optimization using geometric functions calculated with the help of the proposed method.
Citation
Arseny Anatolievich Danilov, Eduard Adipovich Mindubaev, and Sergey Vasilyevich Selishchev, "Design and Evaluation of an Inductive Powering Unit for Implantable Medical Devices Using GPU Computing," Progress In Electromagnetics Research B, Vol. 69, 61-73, 2016.
doi:10.2528/PIERB16062805
References

1. Bocan, K. and E. Sejdic, "Adaptive transcutaneous power transfer to implantable devices: A state of the art review," Sensors, Vol. 16, No. 3, 393, 2016.
doi:10.3390/s16030393

2. Lenaerts, B. and R. Puers, Omnidirectional Inductive Powering for Biomedical Implants, Springer, Netherlands, 2009.
doi:10.1007/978-1-4020-9075-2

3. Yakovlev, A., S. Kim, and A. Poon, "Implantable biomedical devices: Wireless powering and communication," IEEE Commun. Mag., Vol. 50, No. 4, 152-159, 2012.
doi:10.1109/MCOM.2012.6178849

4. Zeng, F.-G., S. Rebscher, W. Harrison, X. Sun, and H. Feng, "Cochlear implants: System design, integration and evaluation," IEEE Rev. Biomed. Eng., Vol. 1, 115-142, 2008.
doi:10.1109/RBME.2008.2008250

5. Bradley, K., "The technology: The anatomy of a spinal cord and nerve root stimulator: The lead and the power source," Pain Med., Vol. 7, No. SUPPL 1, S27-S34, 2006.
doi:10.1111/j.1526-4637.2006.00120.x

6. Zhou, D. and E. Greenbaum, Implantable Neural Prostheses 1. Devices and Applications, Springer-Verlag, New York, 2009.
doi:10.1007/978-0-387-98120-8_2

7. Weiland, J., W. Liu, and M. Humayun, "Retinal prosthesis," Annu. Rev. Biomed. Eng., Vol. 7, 361-401, 2005.
doi:10.1146/annurev.bioeng.7.060804.100435

8. Li, X., Y. Yang, and Y. Gao, "Visual prosthesis wireless energy transfer system optimal modeling," Biomed. Eng. Online, Vol. 13, No. 1, 2014.

9. Baumgart, R., P. Thaller, S. Hinterwimmer, M. Krammer, T. Hierl, and W. Mutschler, "A fully implantable, programmable distraction nail (fitbone) — New perspectives for corrective and reconstructive limb surgery in practice of intramedullary locked nails," Practice of Intramedullary Locked Nails, 189-198, Springer, Berlin, Heidelberg, 2006.

10. Bergmann, G., F. Graichen, J. Dymke, A. Rohlmann, G. N. Duda, and P. Damm, "High-tech hip implant for wireless temperature measurements in vivo," PLoS One, Vol. 7, No. 8, e43489, 2012.
doi:10.1371/journal.pone.0043489

11. Wang, J., J. Smith, and P. Bonde, "Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability," Ann. Thorac. Surg., Vol. 97, No. 4, 1467-1474, 2014.
doi:10.1016/j.athoracsur.2013.10.107

12. Slaughter, M. and T. Myers, "Transcutaneous energy transmission for mechanical circulatory support systems: history, current status, and future prospects," J. Cardiac Surg., Vol. 25, No. 4, 484-489, 2010.
doi:10.1111/j.1540-8191.2010.01074.x

13. Danilov, A. A., G. P. Itkin, and S. V. Selishchev, "Progress in methods for transcutaneous wireless energy supply to implanted ventricular assist devices," Biomed. Eng., Vol. 44, No. 4, 125-129, 2010.
doi:10.1007/s10527-010-9169-6

14. Puers, R. and G. Vandervoorde, "Recent progress on transcutaneous energy transfer for total artificial heart System," Artif. Organs, Vol. 25, No. 5, 400-405, 2001.
doi:10.1046/j.1525-1594.2001.025005400.x

15. Leung, H. Y., D. M. Budgett, and A. P. Hu, "Minimizing power loss in air-cored coils for TET heart pump systems," IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 1, No. 8, 412-419, 2011.
doi:10.1109/JETCAS.2011.2164974

16. Choi, S.-W. and M.-H. Lee, "Coil-capacitator circuit design of a transcutaneous energy transmission system to deliver stable electric power," ETRI J., Vol. 30, No. 6, 844-849, 2008.
doi:10.4218/etrij.08.0108.0321

17. Bock, D., A. Marschilok, K. Takeuchi, and E. Takeuchi, "Batteries used to power implantable biomedical devices," Electrochim. Acta, Vol. 84, 155-164, 2012.
doi:10.1016/j.electacta.2012.03.057

18. Amar, A., A. Kouki, and H. Cao, "Power approaches for implantable medical devices," Sensors, Vol. 15, No. 11, 28889-28914, 2015.
doi:10.3390/s151128889

19. Larsson, B., H. Elmqvist, L. Ryden, and H. Shueller, "Lessons from the first patient with an implanted pacemaker: 1958–2001," PACE, Vol. 26, No. 1, Pt. 1, 114-124, 2003.
doi:10.1046/j.1460-9592.2003.00162.x

20. Schuder, J. C., "Powering an artificial heart: Birth of the inductively coupled-radio frequency system in 1960," Artif. Organs, Vol. 26, No. 11, 909-915, 2002.
doi:10.1046/j.1525-1594.2002.07130.x

21. Jegadeesan, R. and Y.-X. Guo, "Topology selection and efficiency improvement of inductive power links," IEEE T. Antenn. Propag., Vol. 60, No. 10, 4846-4854, 2012.
doi:10.1109/TAP.2012.2207325

22. Hu, L., Y. Fu, X. Ruan, H. Xie, and X. Fu, "Detecting malposition of coil couple for transcutaneous energy transmission," ASAIO J., Vol. 62, No. 1, 56-62, 2016.
doi:10.1097/MAT.0000000000000289

23. Danilov, A. A. and E. A. Mindubaev, "Influence of angular coil displacements on effectiveness of wireless transcutaneous inductive energy transmission," Biomed. Eng., Vol. 49, No. 3, 171-173, 2015.
doi:10.1007/s10527-015-9523-9

24. Friedmann, J., F. Groedl, and R. Kennel, "A novel universal control scheme for transcutaneous energy transfer (TET) applications," IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 3, No. 1, 296-305, 2015.

25. Ghovanloo, M., "An overview of the recent wideband transcutaneous wireless communication techniques," 33rd Annual International Conference of the IEEE EMBS, 5864-5867, 2011.

26. Zierhofer, C. M. and E. S. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils," IEEE Trans. Biomed. Eng., Vol. 43, No. 7, 708-714, 1996.
doi:10.1109/10.503178

27. Jow, U.-M. and M. Ghovanloo, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Transactions on Biomedical Circuits and Systems, Vol. 1, No. 3, 193-202, 2007.
doi:10.1109/TBCAS.2007.913130

28. Danilov, A. A., E. A. Mindubaev, and S. V. Selishchev, "Space-frequency approach to design of displacement tolerant transcutaneous energy transfer system," Progress In Electromagnetics Research M, Vol. 44, 91-100, 2015.
doi:10.2528/PIERM15082006

29. Babic, S. and C. Akyel, "New formulas for mutual inductance and axial magnetic force between magnetically coupled coils: Thick circular coil of the rectangular cross-section-thin disk coil (pancake)," IEEE T. Magn., Vol. 49, No. 7, 860-868, 2013.
doi:10.1109/TMAG.2012.2212909

30. Babic, S., F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R. Ravaud, "New formulas for mutual inductance and axial magnetic force between a thin wall solenoid and a thick circular coil of rectangular cross-section," IEEE T. Magn., Vol. 47, No. 8, 2034-2044, 2011.
doi:10.1109/TMAG.2011.2125796

31. Babic, S. I. and C. Akyel, "Calculating mutual inductance between circular coils with inclined axes in air," IEEE T. Magn., Vol. 44, No. 7, 1743-1750, 2008.
doi:10.1109/TMAG.2008.920251

32. Conway, J. T., "Inductance calculations for noncoaxial coils using Bessel functions," IEEE T. Magn., Vol. 43, No. 3, 1023-1034, 2007.
doi:10.1109/TMAG.2006.888565

33. Conway, J. T., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE T. Magn., Vol. 44, No. 4, 453-462, 2008.
doi:10.1109/TMAG.2008.917128

34. Conway, J. T., "Exact solutions for the mutual inductance of circular coils and elliptic coils," IEEE T. Magn., Vol. 48, No. 1, 81-94, 2012.
doi:10.1109/TMAG.2011.2161768

35. Conway, J. T., "Analytical solutions for the self and mutual inductances of concentric coplanar disk coils," IEEE T. Magn., Vol. 49, No. 3, 1135-1142, 2013.
doi:10.1109/TMAG.2012.2229287

36. Babic, S. and C. Akyel, "Magnetic force between inclined circular filaments placed in any desired position," IEEE T. Magn., Vol. 48, No. 1, 69-80, 2012.
doi:10.1109/TMAG.2011.2165077

37. Babic, S., F. Sirois, C. Akyel, and C. Girardi, "Mutual inductance calculation between circular filaments arbitrarily positioned in space: Alternative to Grover’s formula," IEEE T. Magn., Vol. 46, No. 9, 3591-3600, 2010.
doi:10.1109/TMAG.2010.2047651

38. Soma, M., D. C. Galbraith, and L. W. White, "Radio-frequency coils in implantable devices: Misalignment analysis and design procedure," IEEE Trans. Biomed. Eng., Vol. BME-34, No. 4, 276-282, 1987.
doi:10.1109/TBME.1987.326088

39. Kalantarov, P. L., "Inductance Calculations," National Power Press, 1955.

40. Krasteva, V. T., S. P. Papazov, and I. K. Daskalov, "Magnetic stimulation for non-homogeneous biological structure," Biomed. Eng. Online, Vol. 1, 2002.

41. Ahma, L., M. Ibrani, and E. Hamiti, "Computation of SAR distribution in a human exposed to mobile phone electromagnetic fields," PIERS Proceedings, 1580-1582, Xi’an, China, March 22–26, 2010.

42. Ke, L., G. Yan, S. Yan, Z. Wang, and D. Liu, "Improvement of the coupling factor of Litz-wire coil pair with ferrite substrate for transcutaneous energy transfer system," Progress In Electromagnetics Research M, Vol. 39, 41-52, 2014.
doi:10.2528/PIERM14080604

43. Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, "GPU computing," P. IEEE, Vol. 96, No. 5, 879-889, 2008.
doi:10.1109/JPROC.2008.917757

44. Nickolls, J. and W. J. Dally, "The GPU computing era," IEEE Micro., Vol. 30, No. 2, 56-69, 2010.
doi:10.1109/MM.2010.41