Vol. 70
Latest Volume
All Volumes
PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-10-13
Detection of Metal Objects Near a Random Rough Surface of Medium at Sounding by Orthogonally Polarized Ultrawideband Pulses
By
Progress In Electromagnetics Research B, Vol. 70, 27-40, 2016
Abstract
Using the program of numerical simulation of ultrawideband pulse reflection from dielectric medium with random rough surface, a possibility to detect ideally conducting objects placed near the surface was investigated. Medium parameters corresponded to the cases of the dry and wet sandy ground. Based on the correlation analysis of the reflected objects with orthogonal polarizations, a decision about the presence or absence of an object was made. An ideally conducting rectangular object was buried into the ground with a random rough surface to different depth. A cross-shaped metal object was disposed above the surface.
Citation
Vladimir Ilich Koshelev Andrey Antonovich Petkun Vyacheslav Mikhailovich Tarnovsky , "Detection of Metal Objects Near a Random Rough Surface of Medium at Sounding by Orthogonally Polarized Ultrawideband Pulses," Progress In Electromagnetics Research B, Vol. 70, 27-40, 2016.
doi:10.2528/PIERB16070402
http://www.jpier.org/PIERB/pier.php?paper=16070402
References

1. Daniels, D. J., Ground Penetrating Radar, 2nd Ed., The Institution of Electrical Engineers, London, 2004.
doi:10.1049/PBRA015E

2. Carin, L., N. Geng, M. McClure, J. Sichina, and L. Nguyen, "Ultrawide-band synthetic-aperture radar for mine-field detection," IEEE Antennas and Propagation Magazine, Vol. 41, No. 2, 18-33, 1999.
doi:10.1109/74.755021

3. Sullivan, A., R. Damarla, N. Geng, Y. Dong, and L. Carin, "Ultrawide-band synthetic aperture radar for detection of unexploded ordnance: Modeling and measurements," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 9, 1306-1315, 2000.
doi:10.1109/8.898763

4. Taylor, J. D., Ultra Wideband Radar Technology, CRC Press, 2001.

5. Dogaru, T. and L. Carin, "Time-domain sensing of targets buried under a rough air-ground interface," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 3, 360-372, 1998.
doi:10.1109/8.662655

6. Dogaru, T., L. Collins, and L. Carin, "Optimal time-domain detection of a deterministic target buried under a randomly rough interface," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 3, 313-326, 2001.
doi:10.1109/8.918604

7. Rappaport, C., M. El-Shenawee, and H. Zhan, "Suppressing GPR clutter from randomly rough ground surfaces to enhance nonmetallic mine detection," Subsurface Sensing Technologies and Applications, Vol. 4, No. 4, 311-326, 2003.
doi:10.1023/A:1026352615393

8. Zhang, G. F. and L. Tsang, "Angular correlation function of wave scattering by a random rough surface and discrete scatterers and its application in the detection of a buried object," Waves in Random Media, Vol. 7, 467-478, 1997.

9. Zhang, G. F., L. Tsang, and Y. Kuga, "Studies of the angular correlation function of scattering by random rough surfaces with and without a buried object," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 2, 444-453, 1997.
doi:10.1109/36.563283

10. Cmielewski, O., M. Saillard, and H. Tortel, "Detection of buried objects beneath a rough surface," Waves in Random and Complex Media, Vol. 16, 417-431, 2006.
doi:10.1080/17455030600719687

11. Morelle, N., M. Testorf, N. Thirion-Moreau, and M. Saillard, "Electromagnetic probing for target detection: Rejection of surface clutter based on the Wigner distribution," Journal of the Optical Society of America A-optics Image Science and Vision, Vol. 26, No. 5, 1178-1186, 2009.
doi:10.1364/JOSAA.26.001178

12. Efremov, A. M., V. I. Koshelev, B. M. Kovalchuk, V. V. Plisko, and K. N. Sukhushin, "Generation and radiation of high-power ultrawideband nanosecond pulses," Journal of Communications Technology and Electronics, Vol. 52, No. 7, 756-764, 2007.
doi:10.1134/S1064226907070078

13. Balzovskii, E. V., Y. I. Buyanov, and V. I. Koshelev, "Dual polarization receiving antenna array for recording of ultra-wideband pulses," Journal of Communications Technology and Electronics, Vol. 55, No. 2, 172-180, 2010.
doi:10.1134/S1064226910020087

14. Warnick, K. F. and W. C. Chew, "Numerical simulations methods for rough surface scattering --- Topical Review," Waves in Random Media, Vol. 11, R1-R30, 2001.
doi:10.1088/0959-7174/11/1/201

15. O'Neill, K., R. F. Lussky, Jr., and K. D. Paulsen, "Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric," IEEE Transactions on Geoscience and Remote Sensing, Vol. , No. , {, , Vol. 34, No. 2, 367-376, 1996.
doi:10.1109/36.485114

16. Geng, N. and L. Carin, "Wide band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 4, 610-619, 1999.
doi:10.1109/8.768799

17. Wang, X., C. F. Wang, Y. B. Gan, and L. W. Li, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901

18. Guan, B., J. F. Zhang, X. Y. Zhou, and T. J. Cui, "Electromagnetic scattering from objects above a rough surface using the method of moments with half-space Green's function," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 10, 3399-3405, 2009.
doi:10.1109/TGRS.2009.2022169

19. Johnson, J. T., "Numerical study of scattering from an object above a rough surface," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, 1361-1367, 2002.
doi:10.1109/TAP.2002.802152

20. Johnson, J. T. and R. J. Burkholder, "A study of scattering from an object below a rough surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 1, 59-66, 2004.
doi:10.1109/TGRS.2003.815670

21. Ji, W.-J. and C.-M. Tong, "The E-PILE+SMCG for scattering from an object below 2D soil rough surface," Progress In Electromagnetics Research B, Vol. 33, 317-337, 2011.
doi:10.2528/PIERB11061004

22. Bakr, S. A. and T. Mannseth, "An approximate hybrid method for electromagnetic scattering from an underground target," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 99-107, 2013.
doi:10.1109/TGRS.2012.2198068

23. Afifi, S., B. Mokhtar, R. Dusseaux, and A. Berrouk, "Electromagnetic wave scattering from rough layered interfaces: Analysis with the small perturbation method and the small slope approximation," Progress In Electromagnetics Research B, Vol. 57, 177-190, 2014.

24. Altuncu, Y., "A numerical method for electromagnetic scattering by 3-D dielectric objects buried under 2-D locally rough surfaces," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3634-3643, 2015.
doi:10.1109/TAP.2015.2438859

25. Bourgeois, J. M. and G. S. Smith, "A complete electromagnetic simulation of the separated-aperture sensor for detecting buried land mines," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 10, 1419-1426, 1998.
doi:10.1109/8.725272

26. Giannakis, I., A. Giannopoulos, and C. Warren, "A realistic FDTD numerical modelling framework of ground penetrating radar for landmine detection," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 37-51, 2015.
doi:10.1109/JSTARS.2015.2468597

27. Fang, H., G. Lin, and R. Zhang, "The first-order symplectic euler method for simulation of GPR wave propagation in pavement structure," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 93-98, 2013.
doi:10.1109/TGRS.2012.2202121

28. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, Boston, MA, 2000.

29. Leschanskiy, I., G. N. Lebedeva, and V. D. Schumilin, "Electrical parameters of sandy and loamy soils in the range of centimeter, decimeter and meter wavelength," Radiophysics and Quantum Electronics, Vol. 14, No. 4, 445-451, 1971.
doi:10.1007/BF01030730

30. Teixeira, F. L., W. C. Chew, M. Straka, M. L. Oristaglio, and T. Wang, "Finite-difference time domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 11, 1928-1937, 1998.
doi:10.1109/36.729364