Vol. 72
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-12-15
Metamaterial-Based High-Efficiency Wireless Power Transfer System at 13.56 MHz for Low Power Applications
By
Progress In Electromagnetics Research B, Vol. 72, 17-30, 2017
Abstract
Magnetically coupled resonant wireless power transfer (WPT) has been employed in many applications, including wireless charging of portable electronic devices, electric vehicles and powering of implanted biomedical devices. However, transmission efficiency decreases sharply due to divergence of magnetic field, especially in under coupled region. Electromagnetic (EM) metamaterial (MM) can manipulate the direction of EM fields due to its abnormal effective permittivity or permeability. In this paper, an ultra-thin and extremely sub-wavelength magnetic MM is designed for a 13.56 MHz WPT system to enhance magnetic field and its power transfer efficiency (PTE). The WPT systems are investigated theoretically, experimentally and by simulation. A relatively high maximum efficiency improvement of 41.7% is obtained, and the range of efficient power transfer can be greatly extended. The proposed MM structure is very compact and ultra-thin in size compared with early publications for some miniaturized applications. In addition, large area, homogeneous magnetic field is obtained and discussed using the proposed MM. Finally, the proposed MM is applied in a more practical WPT system (with a low power light bulb load) to reveal its effects. The bulb brightness intuitively verifies the efficiency improvement in the WPT system with the MM.
Citation
Jun-Feng Chen, Zhixia Ding, Zhaoyang Hu, Shengming Wang, Yongzhi Cheng, Minghai Liu, Bin Wei, and Songcen Wang, "Metamaterial-Based High-Efficiency Wireless Power Transfer System at 13.56 MHz for Low Power Applications," Progress In Electromagnetics Research B, Vol. 72, 17-30, 2017.
doi:10.2528/PIERB16071509
References

1. Anderson, L. I., "Nikola Tesla on his work with alternating currents and their application to wireless telegraphy, telephony and transmission of power," Telephony and Transmission of Power Twenty First Century Books, 88-147, 2002.

2. Garnica, J., R. A. Chinga, and J. Lin, "Wireless power transmission: From far field to near field," Proc. IEEE, Vol. 101, No. 6, 1321-1331, 2013.
doi:10.1109/JPROC.2013.2251411

3. McSpadden, J. O. and J. C. Mankins, "Space solar power programs and microwave wireless power transmission technology," IEEE Micro. Mag., Vol. 3, No. 4, 46-57, 2002.
doi:10.1109/MMW.2002.1145675

4. Kurs, A, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254

5. Sample, A. P., D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, 2011.
doi:10.1109/TIE.2010.2046002

6. Chen, L., S. Liu, Y. C. Zhou, and T. J. Cui, "An optimizable circuit structure for high-efficiency wireless power transfer," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 339-349, 2013.
doi:10.1109/TIE.2011.2179275

7. Lee, C. K., W. Zhong, and S. Hui, "Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems," IEEE Trans. Power Electron., Vol. 27, No. 4, 1905-1916, 2012.
doi:10.1109/TPEL.2011.2169460

8. Ahn, D. and S. Hong, "A study on magnetic field repeater in wireless power transfer," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 360-371, 2013.
doi:10.1109/TIE.2012.2188254

9. Che, B. J., G. H. Yang, F. Y. Meng, K. Zhang, J. H. Fu, Q. Wu, and L. Sun, "Omnidirectional non-radiative wireless power transfer with rotating magnetic field and efficiency improvement by metamaterial," Appl. Phys. A --- Mater. Sci. & Processing, Vol. 116, No. 4, 1579-1586, 2014.
doi:10.1007/s00339-014-8409-0

10. Rodriguez, E. S. G., A. K. RamRakhyani, D. Schurig, and G. Lazzi, "Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 5, 1644-1654, 2016.
doi:10.1109/TMTT.2016.2549526

11. Pham, T. S., A. K. Ranaweera, V. D. Lam, and J. W. Lee, "Experiments on localized wireless power transmission using a magneto-inductive wave two-dimensional metamaterial cavity," Appl. Phys. Exp., Vol. 9, 044101, 2016.
doi:10.7567/APEX.9.044101

12. Zhang, Y. Y., C. Yao, H. J. Tang, and Y. C. Li, "Spatially mapped metamaterials make a new magnetic concentrator for the two-coil system," Progress In Electromagnetics Research, Vol. 150, 49-57, 2015.
doi:10.2528/PIER14110104

13. Cho, Y., J. J. Kim, D. H. Kim, S. Lee, H. Kim, C. Song, S. Kong, H. Kim, C. Seo, S. Ahn, and J. Kim, "Thin PCB-type metamaterials for improved efficiency and reduced EMF leakage in wireless power transfer systems," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 2, 353-364, 2016.

14. Chen, J. F., Z. Y. Hu, S. M. Wang, M. H. Liu, Y. Z. Cheng, Z. X. Ding, B. Wei, and S. C. Wang, "Application of ultra-thin assembled planar metamaterial for wireless power transfer system," Progress In Electromagnetics Research C, Vol. 65, 153-162, 2016.
doi:10.2528/PIERC16033002

15. Chabalko, M. J., J. Besnoff, and D. S. Ricketts, "Magnetic field enhancement in wireless power with metamaterials and magnetic resonant couplers," IEEE Antenna Wireless Propag. Lett., Vol. 15, 452-455, 2016.
doi:10.1109/LAWP.2015.2452216

16. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

17. Urzhumov, Y. and D. R. Smith, "Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer," Phys. Rev. B, Vol. 83, No. 20, 205114, 2011.
doi:10.1103/PhysRevB.83.205114

18. Choi, J. and C. H. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

19. Huang, D., Y. Urzhumov, D. R. Smith, K. H. Teo, and J. Zhang, "Magnetic superlens-enhanced inductive coupling for wireless power transfer," J. Appl. Phys., Vol. 111, No. 6, 064902, 2012.
doi:10.1063/1.3692757

20. Wang, B., K. H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, "Experiments on wireless power transfer with metamaterials," Appl. Phys. Lett., Vol. 98, No. 25, 254101, 2011.
doi:10.1063/1.3601927

21. Wang, B., W. Yerazunis, and K. H. Teo, "Wireless power transfer: Metamaterials and array of coupled resonators," Proc. IEEE, Vol. 101, No. 6, 1359-1368, 2013.
doi:10.1109/JPROC.2013.2245611

22. Lipworth, G., J. Ensworth, K. Seetharam, D. Huang, J. S. Lee, P. Schmalenberg, T. Nomura, M. S. Reynolds, D. R. Smith, and Y. Urzhumov, "Magnetic metamaterial superlens for increased range wireless power transfer," Sci. Rep., Vol. 4, 3642, 2014.

23. Ranaweera, A. L. A. K., T. P. Doung, and J. W. Lee, "Experimental investigation of compact metamaterial for high efficiency midrange wireless power transfer applications," J. Appl. Phys., Vol. 116, No. 4, 043914, 2014.
doi:10.1063/1.4891715

24. Ranaweera, A. L. A. K., C. A. Moscoso, and J. W. Lee, "Anisotropic metamaterial for efficiency enhancement of mid-range wireless power transfer under coil misalignment," J. Phys. D: Appl. Phys., Vol. 48, No. 45, 455104, 2015.
doi:10.1088/0022-3727/48/45/455104

25. Chen, W. C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely subwavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, No. 20, 201104, 2012.
doi:10.1103/PhysRevB.85.201104

26. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950

27. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, No. 1, 014402, 2004.
doi:10.1103/PhysRevB.69.014402

28. Huang, Y., H. J. Tang, E. C. Chen, and C. Yao, "Effect on wireless power transmission with different layout of left-handed materials," AIP Adv., Vol. 3, No. 7, 072134, 2013.
doi:10.1063/1.4817579

29. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

30. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

31. Wu, Q., Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, "Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms," EPL-Europhys. Lett., Vol. 109, No. 6, 68005, 2015.
doi:10.1209/0295-5075/109/68005

32. Cheng, Y. Z., J. Jin, W. L. Li, J. F. Chen, B. Wang, and R. Z. Gong, "Indefinite-permeability metamaterial lens with finite size for miniaturized wireless power transfer system," Int. J. Electron. Commun. (AEU), Vol. 70, No. 9, 1282-1287, 2016.
doi:10.1016/j.aeue.2016.06.011

33. Fan, Y., L. Li, S. Yu, C. Zhu, and C. H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711

34. Son, H. C., J. W. Kim, D. H. Kim, K. H. Kim, and Y. J. Park, "Self-resonant coil with coaxial-like capacitor for wireless power transfer," IEEE Microw. Conf. Proc. (APMC), 90-93, Asia-Pacific, 2011.

35. Kalantarov, P. L. and L. A. Zeitlin, Inductances Calculation Handbook, 1986, translated by T. Chen, et al., China Machine Press, Beijing, 1992 (in Chinese).

36. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L. W. Li, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
doi:10.1109/TPEL.2014.2387835

37. Mongia, R., RF and Microwave Coupled-Line Circuits, Artech House, Norwood, MA, 2007.

38. Chen, J., Feedback Networks: Theory and Circuit Application, World Scientific, Singapore, 2007.
doi:10.1142/3200

39. Freire, M. J. and R. Marques, "Planar magnetoinductive lens for three-dimensional subwavelength imaging," Appl. Phys. Lett., Vol. 86, 182505, 2005.
doi:10.1063/1.1922074

40. Duong, T. P. and J. W. Lee, "Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 8, 442-444, 2011.
doi:10.1109/LMWC.2011.2160163

41. Niu, W. Q., W. Gu, J. X. Chu, and A. D. Shen, "Coupled-mode analysis of frequency splitting phenomena in CPT systems," Electron. Lett., Vol. 48, No. 12, 723-724, 2012.
doi:10.1049/el.2012.0953