Vol. 72
Latest Volume
All Volumes
PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-12-22
Electromagnetic Scattering from BI-Periodic Fabric Structures
By
Progress In Electromagnetics Research B, Vol. 72, 31-47, 2017
Abstract
We develop an efficient semi-analytical technique to calculate the electromagnetic scattering from fabric structures modeled as crossed gratings of circular coated fibers of any material composition, arranged arbitrarily in yarns. The method relies on a matrix formulation based on multipole expansion for modeling conical scattering from uniaxial gratings of fibers, and employs a scattering matrix approach to obtain co- and cross-polarized transmission and reflection coefficients. The lattice sums are evaluated using an efficient adaptive algorithm based on Shank's transformation. The method can be employed for analyzing the scattering characteristics of fabric structures embedded in any arbitrary layered media. The validity of the method is verified through comparison with full-wave finite-difference time-domain simulations. A substantial performance gain is obtained, which makes the proposed method applicable to solve large-scale fabric structure.
Citation
Mohammad Mahdi Salary Samad Jafar-Zanjani Hossein Mosallaei , "Electromagnetic Scattering from BI-Periodic Fabric Structures," Progress In Electromagnetics Research B, Vol. 72, 31-47, 2017.
doi:10.2528/PIERB16103101
http://www.jpier.org/PIERB/pier.php?paper=16103101
References

1. Tong, J. K., X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, "Infrared-transparent visible-opaque fabrics for wearable personal thermal management," ACS Photonics, Vol. 2, No. 6, 769-778, 2015, doi:10.1021/acsphotonics.5b00140.
doi:10.1021/acsphotonics.5b00140

2. Hsu, P.-C., X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, "Personal thermal management by metallic nanowire-coated textile," Nano Letters, Vol. 15, No. 1, 365-371, 2015, doi:10.1021/nl5036572.
doi:10.1021/nl5036572

3. Pan, S., Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, "Wearable solar cells by stacking textile electrodes," Angewandte Chemie, Vol. 126, No. 24, 6224-6228, 2014, doi:10.1002/ange.201402561.
doi:10.1002/ange.201402561

4. Zhang, N., J. Chen, Y. Huang, W. Guo, J. Yang, J. Du, X. Fan, and C. Tao, "A wearable all-solid photovoltaic textile," Advanced Materials, Vol. 28, No. 2, 263-269, 2015, doi:10.1002/adma.201504137.
doi:10.1002/adma.201504137

5. Zhang, Z., X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, and H. Peng, "Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format," Advanced Materials, Vol. 26, No. 3, 466-470, 2013, doi:10.1002/adma.201302951.
doi:10.1002/adma.201302951

6. Zhang, Z., X. Li, G. Guan, S. Pan, Z. Zhu, D. Ren, and H. Peng, "A lightweight polymer solar cell textile that functions when illuminated from either side," Angewandte Chemie, Vol. 126, No. 43, 11755-11758, 2014, doi:10.1002/ange.201407688.
doi:10.1002/ange.201407688

7. Erdumlu, N. and C. Saricam, "Electromagnetic shielding effectiveness of woven fabrics containing cotton/metal-wrapped hybrid yarns," Journal of Industrial Textiles, Vol. 46, No. 4, 1084-1103, 2015, doi:10.1177/1528083715613628.
doi:10.1177/1528083715613628

8. Roh, J. S., Y. S. Chi, T. J. Kang, and S. W. Nam, "Electromagnetic shielding effectiveness of multifunctional metal composite fabrics," Textile Research Journal, Vol. 78, No. 9, 825-835, 2008, doi:10.1177/0040517507089748.
doi:10.1177/0040517507089748

9. Narbonneau, F., D. Kinet, B. Paquet, A. Depre, J. de Jonckheere, R. Logier, J. Zinke, J. Witt, and K. Krebber, "Smart textile embedding optical fibre sensors for healthcare monitoring during MRI," Advances in Science and Technology, Vol. 60, 134-143, 2008, doi:10.4028/www.scientific.net/ast.60.134.
doi:10.4028/www.scientific.net/AST.60.134

10. Ciocchetti, M., C. Massaroni, P. Saccomandi, M. Caponero, A. Polimadei, D. Formica, and E. Schena, "Smart textile based on fiber bragg grating sensors for respiratory monitoring: Design and preliminary trials," Biosensors, Vol. 5, No. 3, 602-615, 2015, doi:10.3390/bios5030602.
doi:10.3390/bios5030602

11. Boriskin, A. V., S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, "Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder," Journal of the Optical Society of America A, Vol. 25, No. 5, 1169, 2008, doi:10.1364/josaa.25.001169.
doi:10.1364/JOSAA.25.001169

12. Jin, J.-M. and V. V. Liepa, "Application of hybrid finite element method to electromagnetic scattering from coated cylinders," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 1, 50-54, 1988, doi:10.1109/8.1074.
doi:10.1109/8.1074

13. Yashiro, K. and S. Ohkawa, "Boundary element method for electromagnetic scattering from cylinders," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 4, 383-389, 1985, doi:10.1109/tap.1985.1143587.
doi:10.1109/TAP.1985.1143587

14. Jarem, J. M., "Rigorous coupled wave analysis of bipolar cylindrical systems: Scattering from inhomogeneous dielectric material, eccentric, composite circular cylinders," Progress In Electromagnetics Research, Vol. 43, 181-237, 2003, doi:10.2528/pier03042304.
doi:10.2528/PIER03042304

15. Twersky, V., "Multiple scattering of radiation by an arbitrary planar configuration of parallel cylinders and by two parallel cylinders," Journal of Applied Physics, Vol. 23, No. 4, 407, 1952, doi:10.1063/1.1702220.
doi:10.1063/1.1702220

16. Wait, J. R., "Scattering of a plane wave from a circular dielectric cylinder at oblique incidence," Canadian Journal of Physics, Vol. 33, No. 5, 189-195, 1955, doi:10.1139/p55-024.
doi:10.1139/p55-024

17. Shah, G. A., "Scattering of plane electromagnetic waves by infinite concentric circular cylinders at oblique incidence," Monthly Notices of the Royal Astronomical Society, Vol. 148, No. 1, 93-102, 1970, doi:10.1093/mnras/148.1.93.
doi:10.1093/mnras/148.1.93

18. Lee, S.-C., "Scattering by closely-spaced radially-stratified parallel cylinders," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 48, No. 2, 119-130, 1992, doi:10.1016/0022-4073(92)90081-e.
doi:10.1016/0022-4073(92)90081-E

19. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," Journal of the Optical Society of America A, Vol. 11, No. 9, 2526, 1994, doi:10.1364/josaa.11.002526.
doi:10.1364/JOSAA.11.002526

20. Henin, B. H., A. Z. Elsherbeni, and M. H. Al Sharkawy, "Oblique incidence plane wave scattering from an array of circular delectric cylinders," Progress In Electromagnetics Research, Vol. 68, 261-279, 2007, doi:10.2528/pier06083102.
doi:10.2528/PIER06083102

21. Henin, B. H., M. H. Al Sharkawy, and A. Z. Elsherbeni, "Scattering of obliquely incident plane wave by an array of parallel concentric metamaterial cylinders," Progress In Electromagnetics Research, Vol. 77, 285-307, 2007, doi:10.2528/pier07082102.
doi:10.2528/PIER07082102

22. Kiani, M., A. Abdolali, and M. M. Salary, "EM scattering from cylindrical structures coated by materials with inhomogeneity in both radial and azimuthal directions," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 1118-1128, 2015, doi:10.1109/tap.2015.2391289.
doi:10.1109/TAP.2015.2391289

23. Abdolali, A., M. Kiani, and M. M. Salary, "Numerical analysis of scattering from cylindrical structures coated by layers having inhomogeneity in both radial and azimuthal directions," IET Microwaves, Antennas & Propagation, Vol. 9, No. 5, 472-485, 2015, doi:10.1049/iet-map.2014.0135.
doi:10.1049/iet-map.2014.0135

24. Wu, Y. and Y. Y. Lu, "Dirichlet-to-neumann map method for analyzing periodic arrays of cylinders with oblique incident waves," Journal of the Optical Society of America B, Vol. 26, No. 7-1442, 2009, doi:10.1364/josab.26.001442.
doi:10.1364/JOSAB.26.001442

25. Yuan, J. and Y. Y. Lu, "Photonic bandgap calculations with dirichlet-to-neumann maps," Journal of the Optical Society of America A, Vol. 23, No. 12-3217, 2006, doi:10.1364/josaa.23.003217.
doi:10.1364/JOSAA.23.003217

26. Smith, G. H., L. C. Botten, R. C. Mcphedran, and N. A. Nicorovici, "Cylinder gratings in conical incidence with applications to modes of air-cored photonic crystal fibers," Physical Review E, Vol. 66, No. 5, 2002, doi:10.1103/physreve.66.056604.
doi:10.1103/PhysRevE.66.056604

27. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proceedings of the IEEE, Vol. 53, No. 8, 805-812, 1965, doi:10.1109/proc.1965.4058.
doi:10.1109/PROC.1965.4058

28. Peterson, B. and S. Strom, "T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E (3)," Physical Review D, Vol. 8, No. 10, 3661-3678, 1973, doi:10.1103/physrevd.8.3661.
doi:10.1103/PhysRevD.8.3661

29. Peterson, B. and S. Strom, "T-matrix formulation of electromagnetic scattering from multilayered scatterers," Physical Review D, Vol. 10, No. 8, 2670-2684, 1974, doi:10.1103/physrevd.10.2670.
doi:10.1103/PhysRevD.10.2670

30. Roussel, H., W. C. Chew, F. Jouvie, and W. Tabbara, "Electromagnetic scattering from dielectric and magnetic gratings of fibers --- A T-matrix solution," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 1, 109-127, 1996.
doi:10.1163/156939396X00252

31. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

32. Yasumoto, K., H. Toyama, and T. Kushta, "Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2603-2611, 2004, doi:10.1109/tap.2004.834440.
doi:10.1109/TAP.2004.834440

33. Toyama, H. and K. Yasumoto, "Electromagnetic scattering from periodic arrays of composite circular cylindrer with internal cylindrical scatterers," Progress In Electromagnetics Research, Vol. 52, 321-333, 2005.
doi:10.2528/PIER04100101

34. Toyama, H., K. Yasumoto, and T. Iwasaki, "Electromagnetic scattering from a dielectric cylinder with multiple eccentric cylindrical inclusions," Progress In Electromagnetics Research, Vol. 40, 113-129, 2003.
doi:10.2528/PIER02062102

35. Kushta, T. and K. Yasumoto, "Electromagnetic scattering from periodic arrays of two circular cylinders per unit-cell," Progress In Electromagnetics Research, Vol. 29, 69-85, 2000.
doi:10.2528/PIER99103101

36. Yasumoto, K., H. Jia, and H. Toyama, "Analysis of two-dimensional electromagnetic crystals consisting of multilayered periodic arrays of circular cylinders," Electronics and Communications in Japan (Part II: Electronics), Vol. 88, No. 9, 19-28, 2005, doi:10.1002/ecjb.20182.
doi:10.1002/ecjb.20182

37. Yang, J., L.-W. Li, and C.-H. Liang, "Two-dimensional scattering by a periodic array of gyrotropic cylinders embedded in a dielectric slab," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 18-21, 2003, doi:10.1109/lawp.2003.810774.
doi:10.1109/LAWP.2003.810774

38. Salary, M. M., M. Nazari, and H. Mosallaei, "Robust technique for computation of scattering and absorption of light by array of nanowires on layered substrate," Journal of the Optical Society of America B, Vol. 32, No. 12, 2448, 2015, doi:10.1364/josab.32.002448.
doi:10.1364/JOSAB.32.002448

39. Yan, W.-Z., Y. Du, H. Wu, D. Liu, and B.-I. Wu, "EM scattering from a long dielectric circular cylinder," Progress In Electromagnetics Research, Vol. 85, 39-67, 2008.
doi:10.2528/PIER08081106

40. Smith, G. H., L. C. Botten, R. C. Mcphedran, and N. A. Nicorovici, "Cylinder gratings in conical incidence with applications to woodpile structures," Physical Review E, Vol. 67, No. 5, 2003, doi:10.1103/physreve.67.056620.
doi:10.1103/PhysRevE.67.056620

41. Kan, D. J., A. A. Asatryan, C. G. Poulton, and L. C. Botten, "Multipole method for modeling linear defects in photonic woodpiles," Journal of the Optical Society of America B, Vol. 27, No. 2, 246, 2010, doi:10.1364/josab.27.000246.
doi:10.1364/JOSAB.27.000246

42. Shanks, D., "Non-linear transformations of divergent and slowly convergent sequences," Journal of Mathematics and Physics, Vol. 34, No. 1-4, 1-42, 1955, doi:10.1002/sapm19553411.
doi:10.1002/sapm19553411

43. Wynn, P., "On a device for computing the E M (S N) transformation," Mathematical Tables and Other Aids to Computation, Vol. 10, No. 54, 91, 1956, doi:10.2307/2002183.
doi:10.2307/2002183

44. Brezinski, C., Y. He, X.-B. Hu, M. Redivo-Zaglia, and J.-Q. Sun, "Multistep ε-algorithm, Shanks' Transformation, and the Lotka-Volterra system by Hirota's Method," Mathematics of Computation, Vol. 81, No. 279, 1527-1549, 2012, doi:10.1090/s0025-5718-2011-02554-8.
doi:10.1090/S0025-5718-2011-02554-8