Vol. 77
Latest Volume
All Volumes
PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-06-29
Identification of Equivalent Circuit Based on Polygon Network for Nonreciprocal Lossy n -Port Device
By
Progress In Electromagnetics Research B, Vol. 77, 1-20, 2017
Abstract
In this paper, a technique to identify/synthesize an equivalent circuit of nonreciprocal lossy N-port device is presented. The technique joins the classical procedure discussed in the '60s to the polygon network recently proposed in the literature, which permits to draw an equivalent circuit for reciprocal lossless N-port device in a very simple way. The identi cation is applied to two microwave devices, a reciprocal lossy iris in WR90 waveguide and a 3-port nonreciprocal lossy circulator. The proposed equivalent circuit could give some information about the agreement of the manufactured device and its design, which usually is developed in the hypothesis of ideal lossless components.
Citation
Leonardo Zappelli , "Identification of Equivalent Circuit Based on Polygon Network for Nonreciprocal Lossy n -Port Device," Progress In Electromagnetics Research B, Vol. 77, 1-20, 2017.
doi:10.2528/PIERB17040307
http://www.jpier.org/PIERB/pier.php?paper=17040307
References

1. Marcuvitz, N., Waveguide Handbook, Mc-Graw-Hill, New York, 1951.

2. Montgomery, C. G., R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, 1st Ed., McGraw-Hill, 1948; Peter Peregrinus on Behalf of the Institution of Electrical Engineers, 2nd Edition, London, U.K., 1987.

3. Carlin, H., "On the physical realizability of linear non-reciprocal networks," Proceedings of the IRE, Vol. 43, No. 5, 608-616, May 1955.
doi:10.1109/JRPROC.1955.278106

4. Carlin, H., "The scattering matrix in network theory," IRE Transactions on Circuit Theory, Vol. 3, No. 2, 88-97, Jun. 1956.
doi:10.1109/TCT.1956.1086297

5. Carlin, H. and D. Youla, "Network synthesis with negative resistors," Proceedings of the IRE, Vol. 49, No. 5, 907-920, May 1961.
doi:10.1109/JRPROC.1961.287934

6. Carlin, H., "On the existence of a scattering representation for passive networks," IEEE Transactions on Circuit Theory, Vol. 14, No. 4, 418-419, Dec. 1967.
doi:10.1109/TCT.1967.1082748

7. Cederbaum, I., "On the physical realizability of linear nonreciprocal networks," IRE Transactions on Circuit Theory, Vol. 3, No. 2, 155-155, Jun. 1956.
doi:10.1109/TCT.1956.1086300

8. Oono, Y., "Application of scattering matrices to the synthesis of n ports," IRE Transactions on Circuit Theory, Vol. 3, No. 2, 111-120, Jun. 1956.
doi:10.1109/TCT.1956.1086304

9. Youla, D., L. Castriota, and H. Carlin, "Bounded real scattering matrices and the foundations of linear passive network theory," IRE Transactions on Circuit Theory, Vol. 6, No. 1, 102-124, Mar. 1959.
doi:10.1109/TCT.1959.1086518

10. Youla, D., "Direct single frequency synthesis from a prescribed scattering matrix," IRE Transactions on Circuit Theory, Vol. 6, No. 4, 340-344, Dec. 1959.
doi:10.1109/TCT.1959.1086571

11. Carlin, H. and D. Youla, "The realizability of the complex ideal transformer," IRE Transactions on Circuit Theory, Vol. 9, No. 4, 412-412, Dec. 1962.
doi:10.1109/TCT.1962.1086967

12. Zappelli, L., "Simple, fast, and effective identification of an equivalent circuit of a waveguide junction with N ports," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 1, 48-55, Jan. 2015.
doi:10.1109/TMTT.2014.2375881

13. Zappelli, L., "An equivalent circuit for discontinuities exciting evanescent accessible modes," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 5, 1197-1209, May 2012.
doi:10.1109/TMTT.2012.2187533

14. Zappelli, L., "Circuit approach to the analysis of microwave discontinuities," Progress In Electromagnetics Research B, Vol. 53, 373-397, 2013.
doi:10.2528/PIERB13061004

15. Zappelli, L., "An equivalent circuit for thick centered irises in rectangular waveguide," Proceedings of Numerical Electromagnetic Modelling and Optimization (NEMO), Pavia, 2014.

16. Zappelli, L., "Reconstruction of the S-matrix of N-port waveguide reciprocal devices from 2-port VNA measurements," Progress In Electromagnetics Research B, Vol. 72, 129-148, 2017.
doi:10.2528/PIERB16102402

17. Gantmacher, F., The Theory of Matrices, Chelsea Publishing Company, New York, 1959.

18. Brookes, M., The Matrix Reference Manual, [Online], Available: http://www.ee.imperial.ac.uk/hp/staff/dmb/matrix/intro.html.