Vol. 79
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-01-15
Approximative Computation Methods for Monostatic Scattering from Axially Symmetric Objects
By
Progress In Electromagnetics Research B, Vol. 79, 127-147, 2017
Abstract
Two approximation methods are presented for fast calculations of the monostatic scattering from axially symmetric scatterers coated with electromagnetic absorbers. The methods are designed for plane wave illumination parallel to the axis of rotation of the scatterer. The first method is based on simulating the scattering of a perfect electric conductor (PEC) enclosing the absorber coated scatterer, and multiplying the result with the squared magnitude of the absorber reflection coecient in a planar scenario. The second method is based on simulating the scattering scenario in a physical optics (PO) solver, where the electromagnetic absorber is treated as reflection dyadic at the outer surface of the scatterer. Both methods result in a significant acceleration in computation speed in comparison to full wave methods, where the PO method carries out the computations in a number of seconds. The monostatic scattering from different geometries have been investigated, and parametric sweeps were carried out to test the limits where the methods yield accurate results. For specular reflections, the approximation methods yield very accurate results compared to full wave simulations when the radius of curvature is on the order of half a wavelength or larger of the incident signal. It is also concluded that the accuracy of the two methods varies depending on what type of absorber is applied to the scatterer, and that absorbers based on ``volume losses'' such as a carbon doped foam absorber and a thin magnetic absorber yield better results than absorbers based on resistive sheets, such as a Salisbury absorber.
Citation
Andreas Ericsson, Daniel Sjöberg, Christer Larsson, and Torleif Martin, "Approximative Computation Methods for Monostatic Scattering from Axially Symmetric Objects," Progress In Electromagnetics Research B, Vol. 79, 127-147, 2017.
doi:10.2528/PIERB17090808
References

1. Van Bladel, J. G., Electromagnetic Fields, 2nd Ed., IEEE Press, Piscataway, NJ, 2007.
doi:10.1002/047012458X

2. Balanis, C. A., Antenna Theory, 3rd Ed., John Wiley & Sons, Hoboken, NJ, 2005.

3. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross-Section Handbook, Vol. 1 and 2, Plenum Press, New York, 1970.
doi:10.1007/978-1-4899-5324-7

4. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, SciTech Publishing Inc., 5601 N, Hawthorne Way, Raleigh, NC 27613, 2004.

5. Gibson, W. C., The Method of Moments in Electromagnetics, Vol. 1, Chapman & Hall/CRC, London, UK, 2008.

6. Davidson, D. B., Computational Electromagnetics for RF and Microwave Engineering, Cambridge University Press, 2005.
doi:10.1017/CBO9780511611575

7. Bondeson, A., T. Rylander, and P. Ingelstrom, Computational Electromagnetics, Springer-Verlag, Berlin, 2005.

8. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propag. Mag., Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128

9. Pan, X.-M., L. Cai, and X.-Q. Sheng, "An efficient high order multilevel fast multipole algorithm for electromagnetic scattering analysis," Progress In Electromagnetics Research, Vol. 126, 85-100, 2012.
doi:10.2528/PIER12020203

10. Ergul, O. and L. Gurel, The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-scale Computational Electromagnetics Problems, John Wiley & Sons, 2014.
doi:10.1002/9781118844977

11. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

12. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3440-3451, 2008.
doi:10.1109/TAP.2008.2005471

13. Garcia, E., C. Delgado, L. P. Lozano, I. Gonzalez-Diego, and M. F. Catedra, "An efficient hybrid-scheme combining the characteristic basis function method and the multilevel fast multipole algorithm for solving bistatic rcs and radiation problems," Progress In Electromagnetics Research B, Vol. 34, 327-343, 2011.
doi:10.2528/PIERB11062204

14. Smith, D. G., Field Guide to Physical Optics, SPIE Press, 2013.
doi:10.1117/3.883971

15. Jin, J. M., Theory and Computation of Electromagnetic Fields, Wiley, 2011.

16. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Elsevier, 2013.

17. Akhmanov, S. A. and S. Y. Nikitin, Physical Optics, Clarendon Press, 1997.

18. Stavroudis, O. N., The Mathematics of Geometrical and Physical Optics: The k-function and Its Ramifications, John Wiley & Sons, 2006.
doi:10.1002/3527608176

19. Ferrando-Bataller, M., F. V. Bondıa, and A. Valero-Nogueira, "Fast physical optics for smooth surfaces," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-3, 2010.

20. Ufimtsev, P. Y., "Method of edge waves in the physical theory of diffraction,", DTIC Document, Tech. Rep., 1971.

21. Mitzner, K., "Incremental length diffraction coefficients,", DTIC Document, Tech. Rep., 1974.

22. Umul, Y. Z., "Modified theory of physical optics," Opt. Express, Vol. 12, No. 20, 4959-4972, 2004.
doi:10.1364/OPEX.12.004959

23. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, John Wiley & Sons, 2007.
doi:10.1002/0470109017

24. Shijo, T., L. Rodriguez, and M. Ando, "The modified surface-normal vectors in the physical optics," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3714-3722, 2008.
doi:10.1109/TAP.2008.2007276

25. Ericsson, A., D. Sjoberg, C. Larsson, and T. Martin, "Scattering for doubly curved functional surfaces and corresponding planar designs," 2016 10th European Conference on IEEE Antennas and Propagation (EuCAP), 1-2, 2016.

26. Ericsson, A., D. Sjoberg, C. Larsson, and T. Martin, "Scattering from a multilayered sphere — Applications to electromagnetic absorbers on double curved surfaces,", Tech. Rep. LUTEDX/(TEAT-7249)/1–32/(2017), Department of Electrical and Information Technology, Lund University, P. O. Box 118, S-221 00 Lund, Sweden, 2017.

27. Sjoberg, D. and A. Ericsson, "Computation of radar cross section using the physical optics approximation,", Tech. Rep. LUTEDX/(TEAT-7255)/1–16/(2017), Department of Electrical and Information Technology, Lund University, P. O. Box 118, S-221 00 Lund, Sweden, 2017.

28. Ericsson, A., D. Sjoberg, C. Larsson, and T. Martin, "Approximative computation methods for monostatic scattering from axially symmetric objects,", Tech. Rep. LUTEDX/(TEAT-7256)/1–36/(2017), Department of Electrical and Information Technology, Lund University, P. O. Box 118, S-221 00 Lund, Sweden, 2017.

29. Jones, E., T. Oliphant, P. Peterson, et al. "SciPy: Open source scientific tools for Python,", 2001, accessed 2017-06-07, [online], available: http://www.scipy.org/.

30. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, 116-130, 1962.
doi:10.1364/JOSA.52.000116

31. Foster, P. R., "The region of application in GTD/UTD," 1996 Third International Conference on Computation in Electromagnetics (Conf. Publ. No. 420), 382-386, 1996.

32. Ericsson, A. and D. Sjoberg, "Design and analysis of a multilayer meander line circular polarization selective structure," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4089-4101, 2017.
doi:10.1109/TAP.2017.2710207

33. Ericsson, A., J. Lundgren, and D. Sjoberg, "Experimental characterization of circular polarization selective structures using linearly single-polarized antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4239-4249, 2017.
doi:10.1109/TAP.2017.2713812