Vol. 80
Latest Volume
All Volumes
PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-02-19
Electromagnetic Scattering from One Dimensional Random Rough Surfaces of Dielectric Layered Media with Waveguide Modes Using Second Order Small Perturbation Method
By
Progress In Electromagnetics Research B, Vol. 80, 1-17, 2018
Abstract
An alternative formulation of the Small Perturbation Method (SPM) in solving electromagnetic scattering from multi-layer random rough surfaces to resolve singularities in spectral integrals is presented. Non-monotonic permittivity changes will allow a multi-layer structure with flat interfaces to support guided modes. The presence of these guided modes translates to poles in the zeroth order Green's function of the media for the surface fields. The poles appear in the first and second order perturbation solutions based on a iterative procedure. Thus, evaluating the spectral integrals to obtain the spatial fields becomes problematic. The Sommerfeld integration path instead of real line integrals is introduced by analytic continuation of the integrand into complex spectral space. It is verified that this alternative spectral integration method is valid for both monotonic and non-monotonic cases.
Citation
Mohammadreza Sanamzadeh Leung Tsang Joel Johnson Robert J. Burkholder Shurun Tan , "Electromagnetic Scattering from One Dimensional Random Rough Surfaces of Dielectric Layered Media with Waveguide Modes Using Second Order Small Perturbation Method," Progress In Electromagnetics Research B, Vol. 80, 1-17, 2018.
doi:10.2528/PIERB17101005
http://www.jpier.org/PIERB/pier.php?paper=17101005
References

1. Tabatabaeenejad, A. and M. Moghaddam, "Bistatic scattering from three-dimensional layered rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 8, 2102-2114, 2006.
doi:10.1109/TGRS.2006.872140

2. Imperatore, P., A. Iodice, and D. Riccio, "Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 4, 1056-1072, 2009.
doi:10.1109/TGRS.2008.2007804

3. Zamani, H., A. Tavakoli, and M. Dehmollaian, "Second-order perturbative solution of scattering from two rough surfaces with arbitrary dielectric profiles," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5767-5776, 2015.
doi:10.1109/TAP.2015.2484387

4. Zamani, H., A. Tavakoli, and M. Dehmollaian, "Scattering from layered rough surfaces: Analytical and numerical investigations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 6, 3685-3696, 2016.
doi:10.1109/TGRS.2016.2524639

5. Sanamzadeh, M., L. Tsang, J. T. Johnson, R. J. Burkholder, and S. Tan, "Scattering of electromagnetic waves from 3d multilayer random rough surfaces based on the second-order small perturbation method: Energy conservation, reflectivity, and emissivity," JOSA A, Vol. 34, No. 3, 395-409, 2017.
doi:10.1364/JOSAA.34.000395

6. Burkholder, R. J., J. T. Johnson, M. Sanamzadeh, L. Tsang, and S. Tan, "Microwave thermal emission characteristics of a two-layer medium with rough interfaces using the second-order small perturbation method," IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 10, 1780-1784, 2017.
doi:10.1109/LGRS.2017.2735421

7. Wu, C. and X. Zhang, "Second-order perturbative solutions for 3-d electromagnetic radiation and propagation in a layered structure with multilayer rough interfaces," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 1, 180-194, 2015.
doi:10.1109/JSTARS.2014.2320506

8. Tabatabaeenejad, A. and M. Moghaddam, "Study of validity region of small perturbation method for two-layer rough surfaces," IEEE Geoscience and Remote Sensing Letter, Vol. 7, No. 2, 319-323, 2010.
doi:10.1109/LGRS.2009.2034543

9. Johnson, J. T., "Third-order small-perturbation method for scattering from dielectric rough surfaces," Journal of the Optical Society of America A, Vol. 16, No. 11, 2720-2736, 1999.
doi:10.1364/JOSAA.16.002720

10. Demir, M. A. and J. T. Johnson, "Fourth and higher-order small perturbation solution for scattering from dielectric rough surfaces," Journal of the Optical Society of America A, Vol. 20, No. 12, 2330-2337, 2003.
doi:10.1364/JOSAA.20.002330

11. Demir, M. A., J. T. Johnson, and T. J. Zajdel, "A study of the fourth-order small perturbation method for scattering from two-layer rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 9, 3374-3382, 2012.
doi:10.1109/TGRS.2011.2182614

12. Wang, T., L. Tsang, J. T. Johnson, and S. Tan, "Scattering and transmission of waves in multiple random rough surfaces: Energy conservation studies with the second order small perturbation method," Progress In Electromagnetics Research, Vol. 157, 120, 2016.

13. Tan, S., M. Aksoy, M. Brogioni, G. Macelloni, M. Durand, K. C. Jezek, T. L. Wang, L. Tsang, J. T. Johnson, M. R. Drinkwater, and L. Brucker, "Physical models of layered polar firn brightness temperatures from 0.5 to 2 GHz," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 7, 3681-3691, 2015.
doi:10.1109/JSTARS.2015.2403286

14. Sanchez-Gil, J. A., A. A. Maradudin, J. Q. Lu, V. D. Freilikher, M. Pustilnik, and I. Yurkevich, "Scattering of electromagnetic waves from a bounded medium with a random surface," Phys. Rev. B, Vol. 50, 15353-15368, Nov. 1994.

15. Freilikher, V., M. Pustilnik, and I. Yurkevich, "Wave scattering from a bounded medium with disorder," Physics Letters A, Vol. 193, No. 5, 467-470, 1994.
doi:10.1016/0375-9601(94)90541-X

16. Piegari, A. and F. Flory, Optical Thin Films and Coatings: From Materials to Applications, Woodhead Publishing Elsevier, Cambridge, 2013.

17. Duan, X. and M. Moghaddam, "3-d vector electromagnetic scattering from arbitrary random rough surfaces using stabilized extended boundary condition method for remote sensing of soil moisture," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 1, 87-103, 2011.
doi:10.1109/TGRS.2011.2160549

18. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Vol. 3: Advanced Topics, Wiley Interscience, 2001.
doi:10.1002/0471224278