Vol. 86
Latest Volume
All Volumes
PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-11-11
Electromagnetic Resonances of Natural Grasslands and Their Effects on Radar Vegetation Index
By
Progress In Electromagnetics Research B, Vol. 86, 19-38, 2020
Abstract
The present paper studies the characteristics of electromagnetic scattering from vegetation models constructed as random wire structures for the purpose of PolSAR imaging and ground surface cover recognition and classification. Radar vegetation index (RVI) has been developed for the purpose of vegetation growth monitoring. Anew method is proposed to use the RVI as an accurate monitor for the natural grassland height taking into account the operational parameters such as the PolSAR look angle and the operating frequency. Also, the present paper addresses a problem that may lead to false indications of the RVI measured for grassland areas. It frequently occurs that some of the narrow long leaves of the grass cloud are quasi-parallel and of nearly equal lengths leading to the generation of internally resonant modes. The enhancement or diminishing of the backscattered field at such internal resonances may give false indication of the RVI and, hence, wrong information can be estimated such as the water content and the grass height. A new method is proposed to model the natural grasslands as clouds of electrically conductive random curly strips for the purpose of obtaining the backscatter coefficients and, hence, the corresponding RVI. The error in height estimation using the proposed method due to the existence of the internal resonances is numerically investigated.
Citation
Shimaa Ahmed Megahed Soliman Khalid Fawzy Ahmed Hussein Abd-El-Hadi A. Ammar , "Electromagnetic Resonances of Natural Grasslands and Their Effects on Radar Vegetation Index," Progress In Electromagnetics Research B, Vol. 86, 19-38, 2020.
doi:10.2528/PIERB19080702
http://www.jpier.org/PIERB/pier.php?paper=19080702
References

1. Huang, Y., J. P. Walker, Y. Gao, X. Wu, and A. Monerris, "Estimation of vegetation water content from the radar vegetation index at L-band," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 2, 981-989, 2016.
doi:10.1109/TGRS.2015.2471803

2. Ulaby, F. T. and T. F. Bush, "Monitoring wheat growth with radar," Photogramm. Eng. Remote Sens., Vol. 42, No. 4, 557-568, Apr. 1976.

3. Ulaby, F. T., C. T. Allen, G. Eger, and E. T. Kanemasu, "Relating the microwave backscattering coefficient to leaf area index," Remote Sens. Environ., Vol. 14, No. 1–3, 113-133, Jan. 1984.
doi:10.1016/0034-4257(84)90010-5

4. Oh, Y. S., S. Y. Hong, Y. J. Kim, J. Y. Hong, and Y. H. Kim, "Polarimetric backscattering coefficients of flooded rice fields at L- and C-bands: Measurements, modeling, and data analysis," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, 2714-2721, Aug. 2009.
doi:10.1109/TGRS.2009.2014053

5. Kim, Y. and J. Zyl, "On the relationship between polarimetric parameters," IGARSS 2000, IEEE 2000 International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Proceedings (Cat. No. 00CH37120), Vol. 3, 1298-1300, 2000.

6. Haldar, D., D. Viral, M. Arundhati, and B. Bimal, "Radar vegetation index for assessing cotton crop condition using RISAT-1 data," Geocarto International, 1-12, 2018.
doi:10.1080/10106049.2018.1516249

7. Szigarski, C., T. Jagdhuber, M. Baur, C. Thiel, M. Parrens, J. P. Wigneron, M. Piles, and D. Entekhabi, "Analysis of the radar vegetation index and potential improvements," Remote Sensing, Vol. 10, No. 11, 1776, 2018.
doi:10.3390/rs10111776

8. Kim, Y. and J. Zyl, "Comparison of forest estimation techniques using SAR data," Proc. IEEE IGARSS Conf., 1395-1397, 2001.

9. Kim, Y., T. Jackson, R. Bindlish, H. Lee, and S. Hong, "Radar vegetation index for estimating the vegetation water content of rice and soybean," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 4, 564-568, Jul. 2012.

10. Kim, Y., T. Jackson, R. Bindlish, S. Hong, G. Jung, and K. Lee, "Retrieval of wheat growth parameters with radar vegetation indices," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 4, 808-812, 2014.
doi:10.1109/LGRS.2013.2279255

11. Zhang, L., Z. Bin, C. Hongjun, and Z. Ye, "Multiple-component scattering model for polarimetric SAR image decomposition," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 4, 603-607, 2008.
doi:10.1109/LGRS.2008.2000795

12. Yoshio, Y., T. Moriyama, M. Ishido, and H. Yamada, "Four-component scattering model for polarimetric SAR image decomposition," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 8, 1699-1706, 2005.
doi:10.1109/TGRS.2005.852084

13. Freeman, A. and S. L. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 3, 963-973, 1998.
doi:10.1109/36.673687

14. Hussein, K. F. A., "Effect of internal resonance on the radar cross section and shield effectiveness of open spherical enclosures," Progress In Electromagnetics Research, Vol. 70, 225-246, 2007.
doi:10.2528/PIER07012101

15. Colak, D., A. Altintas, and A. I. Nosich, "RCS study of cylindrical cavity-backed apertures with outer or inner material coating: The case of E-polarization," IEEE Trans. Antennas Propagat., Vol. 41, No. 11, 1551-1559, Nov. 1993.
doi:10.1109/8.267355

16. Soliman, S. A. M., A. E. Farahat, K. F. A. Hussein, and A. Ammar, "Spatial domain generation of random surface using savitzky-golay filter for simulation of electromagnetic polarimetric systems," Aces Journal, Vol. 34, No. 1, 148-161, Jan. 2019.

17. Hussein, K. F. A., "Fast computational algorithm for EFIE applied to arbitrarily-shaped conducting surfaces," Progress In Electromagnetics Research, Vol. 68, 339-357, 2007.
doi:10.2528/PIER06122502

18. Kocifaj, M., V. Gorden, and K. Jozef, "Backscatter in a cloudy atmosphere as a lightning-threat indicator," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 150, 175-180, 2015.
doi:10.1016/j.jqsrt.2014.03.004

19. Kocifaj, M., K. Jozef, K. Frantisek, and V. Gorden, "Charge-induced electromagnetic resonances in nanoparticles," Annalen der Physik, Vol. 527, No. 11–12, 765-769, 2015.
doi:10.1002/andp.201500202

20. Szigarski, C., T. Jagdhuber, M. Baur, C. Thiel, M. Parrens, J. P. Wigneron, M. Piles, and D. Entekhabi, "Analysis of the radar vegetation index and potential improvements," Remote Sensing, Vol. 10, No. 11, 1776, 2018.
doi:10.3390/rs10111776