Vol. 86
Latest Volume
All Volumes
PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2020-03-04
H -Shaped Fractal Slots Based Highly Miniaturized Substrate Integrated Waveguide Metamaterial Bandpass Filters for C-Band Applications
By
Progress In Electromagnetics Research B, Vol. 86, 139-158, 2020
Abstract
A new family of substrate integrated waveguide metamaterial bandpass filters is proposed which support the backward and forward wave propagations with two adjacent passbands under the cutoff frequency of the structure. Through varying the fractal slots sizes etched overthe SIW structures, different frequency transmission responses were realized. Extraction of the metamaterial parameters was achieved via scattering parameters. The equivalent circuit model was analyzed to provide comprehensionon the SIW-metamaterial unit cells. The equivalent electrical length of a fractal slot is larger than the conventional slot, making it suitable to design highly miniaturized filters. Three filters using the 3rd iteration H-shaped SIW-metamaterial unit cells were designed and testedusing subwavelength resonators. Filter designwas used to extract the coupling coefficient and external quality factor to obtain the filters' optimized physical dimensions. The out-of-band rejection can be enhanced by configuring the fractal slots or the SIW. A wide upper out-of-band rejection with attenuation >50 dB with the range 5.5 GHz to 9 GHz was realized. The proposed filters offer advantages through low insertion loss, easy fabrication, high selectivity, small size, and low cost. The measured scattering parameters S21 and S11 were in agreement with the simulated.
Citation
Ayad Muslim Hamzah Lukman Audah Nasr Alkhafaji , "H -Shaped Fractal Slots Based Highly Miniaturized Substrate Integrated Waveguide Metamaterial Bandpass Filters for C-Band Applications," Progress In Electromagnetics Research B, Vol. 86, 139-158, 2020.
doi:10.2528/PIERB19123006
http://www.jpier.org/PIERB/pier.php?paper=19123006
References

1. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wirel. Components Lett., Vol. 11, No. 2, 68-70, 2001.
doi:10.1109/7260.914305

2. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microw. Wirel. Components Lett., Vol. 12, No. 9, 333-335, 2002.
doi:10.1109/LMWC.2002.803188

3. Deslandes, D. and K. Wu, "Design consideration and performance analysis of substrate integrated waveguide components," 2002 32nd Eur. Microw. Conf. EuMC 2002, No. 2, 3-6, 2002.

4. Musallam, M., et al., "Metabolic Syndrome and its components among Qatari population," Int. J. Food Safety, Nutr. Public Heal., Vol. 1, No. 1, 88-102, 2008.
doi:10.1504/IJFSNPH.2008.018858

5. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156

6. Veselago, V. G., "The electrodynamic of substances with simultaneous negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

7. Gil, I., J. Bonache, J. Garcıa-Garcıa, F. Falcone, and F. Martın, "Metamaterials in microstrip technology for filter applications," IEEE Antennas Propag. Soc. AP-S Int. Symp., Vol. 1A, No. 1, 668-671, 2005.

8. Navarro-Cia, M., M. Beruete, I. Campillo, and M. Sorolla, "Millimeter-wave left-handed extraordinary transmission metamaterial demultiplexer," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 212-215, 2009.
doi:10.1109/LAWP.2008.2005041

9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

10. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martın, and M. Sorolla, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wirel. Components Lett., Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

11. Marqus, R., F. Martn, and M. Sorolla, , Metamaterials with Negative Parameters, 2007.

12. Caloz, C., , Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications: The Engineering Approach, 2005.

13. Martinez, J. A., J. J. De Dios, A. Belenguer, H. Esteban, and V. E. Boria, "Integration of a very high quality factor filter in empty substrate-integrated waveguide at Q-band," IEEE Microw. Wirel. Components Lett., Vol. 28, No. 6, 503-505, 2018.
doi:10.1109/LMWC.2018.2833214

14. Moro, R., S. Moscato, M. Bozzi, and L. Perregrini, "Substrate integrated folded waveguide filter with out-of-band rejection controlled by resonant-mode suppression," IEEE Microw. Wirel. Components Lett., Vol. 25, No. 4, 214-216, 2015.
doi:10.1109/LMWC.2015.2400927

15. Kumar, R. and S. N. Singh, "Design and analysis of ridge substrate integrated waveguide bandpass filter with octagonal complementary split ring resonator for suppression of higher order harmonics," Progress In Electromagnetics Research C, Vol. 89, 87-99, 2019.
doi:10.2528/PIERC18080404

16. Hong, W., et al., "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," IRMMW-THz 2006 —31st Int. Conf. Infrared Millim. Waves 14th Int. Conf. Terahertz Electron., Vol. 152, 219, 2006.

17. Structures, W. L., Y. Dong, S. Member, T. Itoh, and L. Fellow, "Composite right/left-handed substrate integrated waveguide and half mode substrate integrated," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 767-775, 2011.
doi:10.1109/TAP.2010.2103025

18. Huang, X. L., L. Zhou, M. V¨olkel, A. Hagelauer, J. F. Mao, and R. Weigel, "Design of a novel quarter-mode substrate-integrated waveguide filter with multiple transmission zeros and higher mode suppressions," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 12, 5573-5584, 2018.
doi:10.1109/TMTT.2018.2879087

19. Dong, Y. D. and T. Itoh, "Composite right/left-handed substrate integrated waveguide and half-mode substrate integrated waveguide," IEEE MTT-S Int. Microw. Symp. Dig., 49-52, 2009.

20. Zhang, X. C., Z. Y. Yu, and J. Xu, "Novel band-pass Substrate Integrated Waveguide (SIW) filter based on Complementary Split ring Resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

21. Che, W., C. Li, K. Deng, and L. Yang, "A novel bandpass filter based on complementary split rings resonators and substrate integrated waveguide," Microw. Opt. Technol. Lett., Vol. 50, No. 3, 748-753, 2008.
doi:10.1002/mop.23182

22. Cao, H., et al., "A CSRR-fed SIWcavity-backed fractal patch antenna for wireless energy harvesting and communication," Sensors (Switzerland), Vol. 15, No. 9, 21196-21203, 2015.
doi:10.3390/s150921196

23. Danaeian, M., K. Afrooz, and A. Hakimi, "Miniaturization of substrate integrated waveguide filters using novel compact metamaterial unit-cells based on SIR technique," AEU — Int. J. Electron. Commun., Vol. 84, 62-73, 2018.
doi:10.1016/j.aeue.2017.11.008

24. Dong, Y. and T. Itoh, "Miniaturized substrate integrated waveguide slot antennas based on negative order resonance," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3856-3864, 2010.
doi:10.1109/TAP.2010.2078449

25. Peano, G., "Sur une courbe, qui remplit toute une aire plane," Math. Ann., Vol. 36, No. 1, 157-160, 1890.
doi:10.1007/BF01199438

26. Bao, X. L., G. Ruvio, M. J. Ammann, and M. John, "A novel GPS patch antenna on a fractal hi-impedance surface substrate," IEEE Antennas Wirel. Propag. Lett., Vol. 5, No. 1, 323-326, 2006.
doi:10.1109/LAWP.2006.878900

27. Romeu, J. and Y. Rahmat-Samii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Trans. Antennas Propag., Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329

28. Murad, N. A., M. Esa, M. F. Mohd Yusoff, and S. H. Ammah Ali, "Hilbert curve fractal antenna for RFID application," 2006 Int. RF Microw. Conf. Proc., Vol. 00, 182-186, 2006.
doi:10.1109/RFM.2006.331065

29. Palandoken, M. and H. Henke, "Fractal negative-epsilon metamaterial," Final Progr. B. Abstr. — iWAT 2010 2010 Int. Work. Antenna Technol. Small Antennas, Innov. Struct. Mater., No. 1, 2-5, 2010.

30. Garcıa-Garcıa, J., J. Bonache, I. Gil, F. Martın, M. Del Castillo Velazquez-Ahumada, and J. Martel, "Miniaturized microstrip and CPW filters using coupled metamaterial resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2628-2634, 2006.
doi:10.1109/TMTT.2006.872934

31. Hong, J.-S. and M. J. Lancaster, , Vol. 7, Microstrip Filters for RF/Microwave Applications, 2001.

32. Huang, L., I. D. Robertson, W. Wu, and N. Yuan, "Substrate integrated waveguide filters with broadside-coupled complementary split ring resonators," IET Microwaves, Antennas Propag., Vol. 7, No. 10, 795-801, 2013.
doi:10.1049/iet-map.2013.0117

33. Yan, T., X.-H. Tang, and Z.-X. Xu, "A novel type of bandpass filter using complementary open-ring resonator loaded HMSIW with an electric cross-coupling," Microw. Opt. Technol. Lett., Vol. 58, No. 4, 748-753, 2016.
doi:10.1002/mop.29719

34. Silveira, D., et al., "Improvements and analysis of nonlinear parallel behavioral models," Int. J. RF Microw. Comput. Eng., Vol. 19, No. 5, 615-626, 2009.
doi:10.1002/mmce.20385

35. Wu, L. S., X. L. Zhou, W. Y. Yin, L. Zhou, and J. F. Mao, "A substrate-integrated evanescentmode waveguide filter with nonresonating node in low-temperature co-fired ceramic," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2654-2662, 2010.
doi:10.1109/TMTT.2010.2065290

36. Danaeian, M., K. Afrooz, A. Hakimi, and A. R. Moznebi, "Compact bandpass filter based on SIW loaded by open complementary split-ring resonators," Int. J. RF Microw. Comput. Eng., Vol. 26, No. 8, 674-682, 2016.
doi:10.1002/mmce.21017

37. Danaeian, M., A. R. Moznebi, and K. Afrooz, "A novel super compact half-mode substrate-integrated waveguide filter using modified complementary split-ring resonator," Int. J. RF Microw. Comput. Eng., Vol. 29, No. 6, 1-8, 2019.

38. Azad, A. R. and A. Mohan, "Sixteenth-mode substrate integrated waveguide bandpass filter loaded with complementary split-ring resonator," Microw. Opt. Technol. Lett., Vol. 53, No. 8, 546-547, 2017.