Vol. 96
Latest Volume
All Volumes
PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
Design Consideration, Challenges and Measurement Aspects of 5G mm -Wave Antennas: a Review
Progress In Electromagnetics Research B, Vol. 96, 39-66, 2022
With the supersonic growth of mobile data demand, the fifth generation (5G) mobile network would exploit the extensive amount of spectrum in the millimeter-wave (mm-Wave) bands to tremendously increase communication capacity. There are conceptual differences between mm-Wave communications and other existing communication systems, in terms of high propagation loss, directivity, and sensitivity to blockage. These characteristics of mm-Wave communications present several challenges to completely exploit the potential of mm-Wave communications, including integrated circuits and system design, interference management, spatial reuse, anti-blockage, and dynamics control. 5G mobile communication systems with sub-6 GHz and millimeter-wave bands are already replacing 4G and 4.5G systems as an evolution towards higher-speed mobile communication and wider bandwidth. From the hardware perspective, the 5G-band causes the miniaturization of RF components including the antennas. In this article, an overview of recent research is presented that discusses design challenges and measurement considerations for various types of compact 5G antennas.
Ashok Kumar, Ashok Kumar, Ping Jack Soh, and Arjun Kumar, "Design Consideration, Challenges and Measurement Aspects of 5G mm -Wave Antennas: a Review," Progress In Electromagnetics Research B, Vol. 96, 39-66, 2022.

1. Rappaport, T. S., Wireless Communications: Principles and Practice, 2nd Ed., Prentice Hall PTR, New Jersey, 1996.

2. Goldsmith, A., Wireless Communications, Cambridge University Press, 2005.

3. Hillebrand, F., "The creation of standards for global mobile communication: GSM and UMTS standardization from 1982 to 2000," IEEE Wirel. Commun., Vol. 20, No. 4, 24-33, 2013.

4. Saeed, N., A. Bader, T. Y. Al-Naffouri, and M. S. Alouini, "When wireless communication faces COVID-19: Combating the pandemic and saving the economy," Frontiers in Communications and Networks, Vol. 1, No. 2, 2020.

5. Bliss, D. W. and S. Govindasamy, Adaptive Wireless Communications: MIMO Channels and Networks, Cambridge University Press, 2013.

6. Dahlman, E., S. Parkvall, and J. Skold, 4G: LTE/LTE-advanced for Mobile Broadband, Academic Press, 2013.

7. Biglieri, E., R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, and H. V. Poor, MIMO Wireless Communications, Cambridge University Press, 2007.

8. Hampton, J. R., Introduction to MIMO Communications, Cambridge University Press, 2013.

9. Moradikordalivand, A., C. Y. Leow, T. AbdRahman, S. Ebrahimi, and T. H. Chua, "Wideband MIMO antenna system with dual polarization for Wi-Fi and LTE applications," Int. J. Microw. Wireless Technol., Vol. 8, No. 2, 643-650, 2020.

10. Warren, D. and D. Calum, "Understanding 5G: Perspectives on future technological advancements in mobile," GSMA Intelligence Report, 2014.

11., , https://www.ericsson.com/en/press-releases/2018/11/5g-estimated-to-reach-1.5-billion-subscriptions-in-2024-ericsson-mobility-report, 2018.

12. Matin, M. A., "Review on millimeter wave antennas-potential candidate for 5G enabled applications," Advanced Electromagnetics, Vol. 5, No. 2, 98-105, 2016.

13. Chih-Lin, I., S. Han, Z. Xu, Q. Sun, and Z. Pan, "5G: Rethink mobile communications for 2020," Philosophical Trans. Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, No. 2062, 20140432, 2016.

14., , https://www.qualcomm.com/media/documents/files/5g-vision-use-cases.pdf.

15. Gawas, A. U., "An overview on evolution of mobile wireless communication networks: 1G-6G," Int. J. Recent and Innovation Trends in Computing and Communication, Vol. 3, No. 4, 3130-3133, 2015.

16. Anguera, J., A. Andújar, M. C. Huynh, C. Orlenius, C. Picher, and C. Puente, "Advances in antenna technology for wireless handheld devices," Int. J. Antennas Propag.1, 1-25, 2013.

17. Lam, K. Y., K. M. Luk, K. F. Lee, H. Wong, and K. B. Ng, "Small circularly polarized U-slot wideband patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 87-90, 2011.

18. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]," IEEE Antennas Propag. Mag., Vol. 55, No. 4, 218-232, 2013.

19. Li, Y., J. Wang, and K. M. Luk, "Millimeter-wave multibeam aperture-coupled magnetoelectric dipole array with planar substrate integrated beamforming network for 5G applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6422-6431, 2017.

20. Yu, B., K. Yang, and G. Yang, "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 462-466, 2017.

21. Boxall, A., , www.digitaltrends.com/mobile/xiaomi-mi-mix-3-news, 2019.

22. Boxall, A., , www.digitaltrends.com/android/samsung-galaxy-s10-5g-news, 2019.

23. Simruni, M. and S. Jam, "Radiation performance improvement of wideband microstrip antenna array using wideband AMC structure," Int. J. Communication Systems, Vol. 32, No. 11, e3962, 2019.

24. Das, S., T. Bose, and H. Islam, "Design, and acceptance test of compact planar monopole antenna for LTE smartphone considering SAR, TRP, and HAC values," Int. J. Communication Systems, Vol. 32, No. 18, e4155, 2019.

25. Kraus, J. D., R. J. Marhefka, and A. S. Khan, Antennas and Wave Propagation, Tata McGraw-Hill Education, 2006.

26. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.

27. Yu, G., G. Y. Li, L. C. Wang, A. Maaref, J. Lee, and D. Lopez-Perez, "Guest editorial: LTE in unlicensed spectrum," IEEE Wirel. Commun., Vol. 23, No. 5, 6-7, 2016.

28., , https://gsacom.com/5G-spectrum-bands, 2017.

29., , https://www.fcc.gov/document/fcc-adopts-rules-facilitate-next-generation-wireless-technologies, 2016.

30., , https://rspg-spectrum.eu/wp-content/uploads/2013/05/RPSG16-032-Opinion 5G.pdf, 2016.

31. Marcus, M. J., "5G and IMT for 2020 and beyond. [Spectrum Policy and Regulatory Issues]," IEEE Wirel. Commun., Vol. 22, No. 3, 2-3, 2015.

32., , https://www.qualcomm.com/news/onq/2017/10/04/path-opening-more-spectrum-5g-us, 2017.

33. Joint Task Group. ITUR, , Annex 3 to Joint Task Group 4-5-6-7 Chairman's Report --- Working document towards preliminary draft CPM text for WRC-15 agenda item 1.1. Tech. Rep. Doc. 2013; 4-5-6-7/393-E.

34. Resolution ITUR. 233, , Studies on frequency-related matters on international mobile telecommunications and other terrestrial mobile broadband applications. Tech. Rep. 2012; 233 [COM6/8].

35., , https://www.miwv.com/5g-radio-frequency, 2018.

36. MacCartney, G. R., J. Zhang, S. Nie, and T. S. Rappaport, "Path loss models for 5G millimeter wave propagation channels in urban microcells," 2013 IEEE Global Communications Conference (GLOBECOM), 3948-3953, 2013.

37., , https://www.cablefree.net/wirelesstechnology/4glte/5g-frequency-bands-lte/.

38. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C. Zhang, "What will 5G be?," IEEE J. Selected Areas Communications, Vol. 32, No. 5, 1065-1082, 2014.

39. Niu, Y., Y. Li, D. Jin, L. Su, and A. V. Vasilakos, "A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges," Wireless Networks, Vol. 21, No. 8, 2657-2676, 2015.

40. Rappaport, T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proc. of the IEEE, Vol. 99, No. 8, 1390-1436, 2011.

41. Jameel, F., Z. Hamid, F. Jabeen, S. Zeadally, and M. A. Javed, "A survey of device-to-device communications: Research issues and challenges," IEEE Commun. Surveys & Tutorials, Vol. 20, No. 2, 2133-2168, 2018.

42. Chiaraviglio, L., C. Di Paolo, and N. B. Melazzi, "5G network planning under service and EMF constraints: Formulation and solutions," IEEE Trans. Mobile Computing, 1-18, 2021.

43. Jaber, M., M. A. Imran, R. Tafazolli, and A. Tukmanov, "5G backhaul challenges and emerging research directions: A survey," IEEE Access, Vol. 4, 1743-1766, 2016.

44. Ahmad, I., T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, and A. Gurtov, "Overview of 5G security challenges and solutions," IEEE Commun. Standards Mag., Vol. 2, No. 1, 36-43, 2018.

45., , https://www.bench.com/setting-the-benchmark/challenges-when-selecting-the-right-substrate-board-material-to-make-a-5g-mmwave-antenna, 2019.

46., , https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-connectivity-solutions/english/data-sheets/rt-duroid-5870-5880-data-sheet.pdf.

47., , https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-connectivity-solutions/english/data-sheets/ro3000-laminate-data-sheet-ro3003-ro3006-ro3010-ro3035.pdf.

48., , https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-connectivity-solutions/english/data-sheets/ro4000-laminates-ro4003c-and-ro4350b-data-sheet.pdf.

49., , https://en.wikipedia.org/wiki/FR-4.

50. Zhang, L., S. Zhao, P. Shang, J. Liu, and F. Han, "Distributed adaptive range extension setting for small cells in heterogeneous cellular network," 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 1-7, 2017.

51. Mehran, F. and A. Rahimian, "Physical layer performance enhancement for femtocell SISO/MISO soft real-time wireless communication systems employing serial concatenation of quadratic interleaved codes," IEEE 20th Iranian Conference on Electrical Engineering (ICEE2012), 118-1193, 2012.

52. Bouras, C. and G. Diles, "Energy efficiency in sleep mode for 5G femtocells," 2017 IEEE Wireless Days, 143-145, 2017.

53. Wang, C.-J. and C.-H. Lin, "A circularly polarized quasi-loop antenna," Progress In Electromagnetics Research, Vol. 84, 333-348, 2008.

54. Khalily, M., R. Tafazolli, T. A. Rahman, and M. R. Kamarudin, "Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1305-1308, 2015.

55. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna, and its arrays for 5G applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2183-2186, 2017.

56. Dadgarpour, A., M. S. Sorkherizi, and A. A. Kishk, "Wideband low loss magnetoelectric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding," IEEE Trans. Antennas Propag., Vol. 64, No. 12, 5094-5101, 2016.

57. Park, S. J., D. H. Shin, and S. O. Park, "Low side-lobe substrate-integrated-waveguide antenna array using broadband unequal feeding network for millimeter-wave handset device," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 923-932, 2015.

58. Ali, M., K. K. Sharma, R. P. Yadav, A. Kumar, F. Jiang, Q. S. Cheng, and G. L. Huang, "Design of dual mode wideband SIW slot antenna for 5G applications," Int. J. RF Microw. Comput.-Aided Engineering, Vol. 30, No. 12, e22449, 2020.

59. Ullah, H. and F. A. Tahir, "A wide-band rhombus monopole antenna array for millimeter wave applications," Microw. Optical Technol. Lett., Vol. 62, No. 4, 2111-2117, 2020.

60. Yang, W. C., H. Wang, W. Q. Che, Y. Huang, and J. Wang, "High-gain, and low-loss millimeter-wave LTCC antenna array using artificial magnetic conductor structure," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 390-395, 2014.

61. Cheng, Y. and Y. Dong, "A compact folded SIW multibeam antenna array for 5G millimeter wave applications," Microw. Optical Technol. Lett., Vol. 63, No. 3, 1236-1242, 2021.

62. Malathi, A. C. J. and D. Thiripurasundari, "Review on isolation techniques in MIMO antenna systems," Indian Journal of Science and Technology, Vol. 9, No. 35, 1-10, 2016.

63. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]," IEEE Antennas Propag. Mag., Vol. 55, No. 4, 218-232, 2013.

64. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, 2003.

65. Hallbjorner, P., "The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 4, 97-99, 2005.

66. Rosengren, K. and P. S. Kildal, "Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: Theory, simulation, and measurement in reverberation chamber," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 152, No. 1, 7-16, 2005.

67. Chae, S. H., S. K. Oh, and S. O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 122-125, 2007.

68. Shin, H. and J. H. Lee, "Capacity of multiple antennas fading channels: Spatial fading correlation, double scattering, and keyhole," IEEE Trans. Information Theory, Vol. 49, No. 10, 2636-2647, 2003.

69. Jilani, S. F. and A. Alomainy, "Millimeter-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microw., Antennas & Propag., Vol. 12, No. 4, 672-677, 2018.

70. Lin, M., P. Liu, and Z. Guo, "Gain-enhanced Ka-band MIMO antennas based on the SIW corrugated technique," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3084-3087, 2017.

71. Khalid, M., S. IffatNaqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.

72. Zhang, Y., J. Y. Deng, M. J. Li, D. Sun, and L. X. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 3, 747-751, 2019.

73. Sharma, S., B. K. Kanaujia, and M. K. Khandelwal, "Implementation of four-port MIMO diversity microstrip antenna with suppressed mutual coupling and cross-polarized radiations," Microsystem Technologies, Vol. 26, No. 2, 993-1000, 2020.

74. Ikram, M., M. S. Sharawi, K. Klionovski, and A. Shamim, "A switched-beam millimeter-wave array with MIMO configuration for 5G applications," Microw. Optical Technol. Lett., Vol. 60, No. 3, 915-920, 2018.

75. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "A 28-GHz antenna for 5G MIMO applications," Progress In Electromagnetics Research Letters, Vol. 78, 73-79, 2018.

76. Gupta, S., Z. Briqech, A. R. Sebak, and T. A. Denidni, "Mutual-coupling reduction using metasurface corrugations for 28 GHz MIMO applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2763-2766, 2017.

77. Usman, M., E. Kobal, J. Nasir, Y. Zhu, C. Yu, and A. Zhu, "Compact SIW fed dual-port single element annular slot MIMO antenna for 5G mmWave applications," IEEE Access, Vol. 9, 91995-92002, 2021.

78. Kumar, A., A. Q. Ansari, B. K. Kanaujia, J. Kishor, and L. Matekovits, "A review on different techniques of mutual coupling reduction between elements of any MIMO antenna. Part 1: DGSs and parasitic structures," Radio Science, Vol. 56, No. 2, e2020RS007122, 2021.

79. Nadeem, I. and D.-Y. Choi, "Study on mutual coupling reduction techniques for MIMO antennas," IEEE Access, Vol. 7, 563-586, 2018.

80. Han, T. Y., "Broadband circularly polarized square-slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 3, 549-554, 2008.

81. Hussain, N., M. J. Jeong, J. Park, and N. Kim, "A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.

82. Chen, H., Y. Shao, Y. Zhang, C. Zhang, and Z. Zhang, "A low-profile broadband circularly polarized mmWave antenna with special-shaped ring slot," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 6, 1492-1496, 2019.

83. Kumar, A., A. Kumar, and A. Kumar, "A broadband circularly polarized monopole antenna for millimeter-wave short range 5G wireless communication," Int. J. RF Microw. Comput.-Aided Engineering, Vol. 31, No. 1, e22518, 2021.

84. Jian, R., Y. Chen, and T. Chen, "Compact wideband circularly polarized antenna with symmetric parasitic rectangular patches for Ka-band applications," Int. J. Antennas Propag., 1-8, 2019.

85. Wu, Q., J. Hirokawa, J. Yin, C. Yu, H. Wang, and W. Hong, "Millimeter-wave multibeam end fire dual-circularly polarized antenna array for 5G wireless applications," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4930-4935, 2018.

86. Park, S. J. and S. O. Park, "LHCP and RHCP substrate integrated waveguide antenna arrays for millimeter-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 601-604, 2016.

87. Du, M., J. Xu, X. Ding, J. Cao, J. Deng, and Y. Dong, "A low-profile wideband LTCC integrated circularly polarized helical antenna array for millimeter-wave applications," Radioengineering, Vol. 27, No. 1, 455-462, 2018.

88. Lin, W. and R. W. Ziolkowski, "Compact, omni-directional, circularly polarized mm-Wave antenna for device-to-device (D2D) communications in future 5G cellular systems," 2017 10th Global Symposium on Millimeter-Waves, 115-116, 2017.

89. Qing, X. and Z. N. Chen, "Millimeter-wave broadband circularly polarized stacked microstrip antenna for satellite applications," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 341-342, 2016.

90. Mantash, M. and T. A. Denidni, "3D FSS polarizer for millimeter-wave antenna applications," Int. J. RF Microw. Comput.-Aided Engineering, Vol. 29, No. 8, e21767, 2019.

91. Hesari, S. S. and J. Bornemann, "Wideband circularly polarized substrate integrated waveguide end fire antenna system with high gain," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2262-2265, 2017.

92. Yoon, S. J. and J. H. Choi, "A Ka-band circular polarized waveguide slot antenna with a cross iris," Applied Sciences, Vol. 10, No. 19, e6994, 2020.

93. Zhang, K., J. Li, Y. Yang, and R. Xu, "A novel design of circularly polarized waveguide antenna," Proceedings of 2014 3rd IEEE Asia-Pacific Conference on Antennas and Propagation, 130-133, 2014.

94. Kesavan, A., M. A. Al-Hassan, I. Ben Mabrouk, and T. A. Denidni, "Wideband circular polarized dielectric resonator antenna array for millimeter-wave applications," Sensors, Vol. 21, No. 11, e3614, 2021.

95. Askari, H., N. Hussain, M. A. Sufian, S. M. Lee, and N. Kim, "A wideband circularly polarized magnetoelectric dipole antenna for 5G millimeter-wave communications," Sensors, Vol. 22, 2338, 2022.

96. Zhu, C., G. Xu, D. Ding, J. Wu, W. Wang, Z.-X. Hunag, and X.-L. Wu, "Low-profile wideband millimeter-wave circularly polarized antenna with hexagonal parasitic patches," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 9, 1651-1655, 2021.

97. Khalid, M., S. IffatNaqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.

98. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proceedings of the IEEE, Vol. 100, No. 6, 2250-2261, 2012.

99. Friis, H. T., C. B. Feldman, and W. M. Sharpless, "The determination of the direction of arrival of short radio waves," Proceedings of the Institute of Radio Engineers, Vol. 22, No. 1, 47-78, 1934.

100. Al Abbas, E., A. T. Mobashsher, and A. Abbosh, "Polarization reconfigurable antenna for 5G cellular networks operating at millimeter waves," 2017 IEEE Asia Pacific Microwave Conference (APMC), 772-774, 2017.

101. Brown, E. R., "RF-MEMS switches for reconfigurable integrated circuits," IEEE Trans. Microw. Theory and Techniques, Vol. 46, No. 11, 1868-1880, 1998.

102. Deng, Z., J. Gan, H. Wei, H. Gong, and X. Guo, "Ka-band radiation pattern reconfigurable antenna based on microstrip MEMS switches," Progress In Electromagnetics Research Letters, Vol. 59, 93-99, 2016.

103. Ikram, M., E. Al Abbas, N. Nguyen-Trong, K. H. Sayidmarie, and A. Abbosh, "Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets," IEEE Trans. Antennas Propag., Vol. 67, No. 12, 7225-7233, 2019.

104. Anagnostou, D. E., G. Zheng, M. T. Chryssomallis, J. C. Lyke, G. E. Ponchak, J. Papapolymerou, and C. G. Christodoulou, "Design, fabrication, and measurements of an RF-MEMS-based self- similar reconfigurable antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 422-432, 2006.

105. Dufour, G., N. Tiercelin, W. T. Khan, P. Coquet, P. Pernod, and J. Papapolymerou, "Large frequency tuning of a millimeter-wave antenna using dielectric liquids in integrated micro-channels," 2015 IEEE MTT-S International Microwave Symposium, 1-4, 2015.

106. Jilani, S. F., S. M. Abbas, K. P. Esselle, and A. Alomainy, "Millimeter-wave frequency reconfigurable T-shaped antenna for 5G networks," 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 100-102, 2015.

107. Hassan, A. E. H., N. Fadlallah, M. Rammal, G. Z. El Nashef, and E. Rachid, "Wideband reconfigurable millimeter-wave linear array antenna using liquid crystal for 5G networks," Wireless Engineering and Technology, Vol. 12, No. 1, 1-14, 2021.

108. Al Abbas, E., N. Nguyen-Trong, A. T. Mobashsher, and A. M. Abbosh, "Polarization-reconfigurable antenna array for millimeter-wave 5G," IEEE Access, Vol. 7, 131214-131220, 2019.

109. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas Propag. Magazine, Vol. 55, No. 1, 49-61, 2013.

110. Lai, M. I., T. Y. Wu, J. C. Hsieh, C. H. Wang, and S. K. Jeng, "Design of reconfigurable antennas based on an L-shaped slot and PIN diodes for compact wireless devices," IET Microwaves, Antennas & Propagation, Vol. 3, No. 1, 47-54, 2009.

111. Weedon, W. H., W. J. Payne, and G. M. Rebeiz, "MEMS-switched reconfigurable antennas," IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio S, Vol. 3, 654-657, 2001.

112. Petosa, A., "An overview of tuning techniques for frequency-agile antennas," IEEE Antennas Propag. Magazine, Vol. 54, No. 4, 271-296, 2012.

113. Entesari, K. and A. P. Saghati, "Fluidics in microwave components," IEEE Microwave Magazine, Vol. 17, No. 5, 50-75, 2016.

114. Raymond, L., L. Nelson, D. Hamilton, and W. Kerwin, "Fabrication of passive components for high temperature instrumentation," IEEE Trans. Components, Hybrids, and Manufacturing Technology, Vol. 2, No. 3, 395-398, 1979.

115. Lakafosis, V., A. Rida, R. Vyas, L. Yang, S. Nikolaou, and M. M. Tentzeris, "Progress towards the first wireless sensor networks consisting of inkjet-printed, paper-based RFID-enabled sensor tags," Proceedings of the IEEE, Vol. 98, No. 9, 1601-1609, 2010.

116. Orecchini, G., F. Alimenti, V. Palazzari, A. Rida, M. M. Tentzeris, and L. Roselli, "Design and fabrication of ultra-low-cost radio frequency identification antennas and tags exploiting paper substrates and inkjet printing technology," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 993-1001, 2011.

117. Gamota, D. R., P. Brazis, K. Kalyanasundaram, and J. Zhang, Printed Organic and Molecular Electronics, Springer Science & Business Media, 2013.

118., , https://www.lpkf.com/en/industries-technologies/research-in-house-pcb-prototyping/produkte/-lpkf-protolaser-u4, 2017.

119. Jilani, S. F., A. Rahimian, Y. Alfadhl, and A. Alomainy, "Low-profile flexible frequency-reconfigurable millimeter-wave antenna for 5G applications," Flexible and Printed Electronics, Vol. 3, No. 2, 035003, 2018.

120. Tehrani, B., B. Cook, J. Cooper, and M. Tentzeris, "Inkjet printing of a wideband, high gain mm-wave Vivaldi antenna on a flexible organic substrate," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 320-321, 2014.

121. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.

122. Shamim, A., L. Roy, N. Fong, and N. G. Tarr, "24 GHz on-chip antennas and balun on bulk Si for air transmission," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 303-311, 2008.

123., , https://antennatestlab.com/antenna-education-tutorials/gain-dbi-passive-antenna.

124. Liu, C. C. and R. G. Rojas, "V-band integrated on-chip antenna implemented with a partially reflective surface in standard 0.13-μm BiCMOS technology," IEEE Trans. Antennas Propag., Vol. 64, No. 12, 5102-5109, 2016.

125. Jing, L., C. R. Rowell, S. Raju, M. Chan, R. D. Murch, and C. P. Yue, "Fabrication and measurement of millimeter-wave on-chip MIMO antenna for CMOS RFIC's," 2016 IEEE MTT-S International Wireless Symposium (IWS), 1-4, 2016.

126., , https://api.ctia.org/wpcontent/uploads/2019/04/CTIAOTATest Plan 3 8 2.pdf, 2019.

127. Qi, Y., G. Yang, L. Liu, J. Fan, A. Orlandi, H. Kong, W. Yu, and Z. Yang, "5G over-the-air measurement challenges: Overview," IEEE Trans. Electromagnetic Compatibility, Vol. 59, No. 5, 1661-1670, 2017.

128. Li, J., Y. Qi, W. Yu, F. Li, J. Fan, A. Orlandi, Z. Yang, and S. Wu, "Objective MIMO measurement," IEEE Trans. Electromagnetic Compatibility, Vol. 60, No. 4, 1190-1197, 2018.

129. Yu, W., Y. Qi, K. Liu, Y. Xu, and J. Fan, "Radiated two-stage method for LTE MIMO user equipment performance evaluation," IEEE Trans. Electromagnetic Compatibility, Vol. 56, No. 5, 1691-1696, 2014.

130. Shen, P., Y. Qi, W. Yu, and F. Li, "Inverse matrix autosearch technique for the RTS MIMO OTA test," IEEE Trans. Electromagnetic Compatibility, Vol. 63, No. 3, 962-969, 2021.