Vol. 4

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-09-09

Study of Effect of Inhomogeneous Distribution of Cooperative Up-Conversion Coefficient on the Optical Amplification Process in Si-Nc and Er Doped Optical Fiber

By Ahmad Salmanogli and Ali Rostami
Progress In Electromagnetics Research C, Vol. 4, 139-155, 2008

Abstract

Effects of different optical losses (auger recombination, cooperative up-conversion, excited state absorption (ESA) and Si- Nc induced loss) on amplification parameters including net gain and population inversion in Si-Nc Er doped fibber are studied. Optical loss due to up-conversion effect has critical role in the mentioned optical amplifiers. Simple modeling of this effect can be done by 2CupN22, where Cup and N2 are up-conversion coefficient and population of level 2 respectively. In traditional considered cases Cup are assumed to be constant, but in practical situation this is hard to be realized. In practice distribution of Er ions is inhomogeneous and especially the Gaussian. So, from our point of view the suitable model should consider position dependence up-conversion coefficient. In this paper we considered this subject and by simulation modeling tries to show effect of inhomogeneous distribution of up-conversion coefficient on optical net gain and population inversion. It is shown that life times of first and second excited states are decreased and so the population inversion is decreased too. Thus optical net gain near to center of the Gaussian distribution is deceased strongly. The observed gain lowering is suitable description of the reported experimental results. Also, it is observed that in high level Si-Nc density the obtained optical gain is decreased against traditional description which Cup is assumed to be constant. The core diameter is considered R = 10μm.

Citation


Ahmad Salmanogli and Ali Rostami, "Study of Effect of Inhomogeneous Distribution of Cooperative Up-Conversion Coefficient on the Optical Amplification Process in Si-Nc and Er Doped Optical Fiber," Progress In Electromagnetics Research C, Vol. 4, 139-155, 2008.
http://www.jpier.org/PIERC/pier.php?paper=08071201

References


    1. Kuntze, S. B., L. Pavel, and J. S. Aitchison, "Controlling a semiconductor optical amplifier using a state-space model," IEEE Journal of Quantum Electronics, Vol. 43, No. 2, February 2007.
    doi:10.1109/JQE.2006.887176

    2. Kim, J. H., Y. I. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, S. H. Kim, and D. Ha, Journal of the Korean Physical Society, Vol. 45, No. 5, 1158-1161, 2004.

    3. Bergano, N. S., Opt. Photon., Vol. 11, 21, 2000.

    4. Kik, P. G. and A. Polman, "Exiton-erbium interaction in Si nanocrystal-doped SiO2," Journal of Applied Physics, Vol. 88, No. 4, 1992-1998, 2000.
    doi:10.1063/1.1305930

    5. Jiang, C. and Q. Zeng, "Optimization of Er-doped waveguide amplifier," Optics and Laser Technology, Vol. 36, 167-171, 2004.
    doi:10.1016/j.optlastec.2003.07.005

    6. Daldosso, N., D. Navarro, M. Melchirro, L. Pavesi, F. Gourbilleau, M. Carrada, R. Rizk, C. Garcia, P, Pellegrino, B. Garrido, and L. Cognolato, "Absorption cross section and signal enhancement in Er-doped Si nanocluster rib-loaded waveguide," Applied Physics Letter, Vol. 86, 261100, 2005.

    7. Timoshenko, V. Yu., D. M. Zhigunov, P. K. Kashkarov, O. A. Shaligina, S. A. Tetrukov, R. J. Zhang, M. Fujii, and S. Hayashi, "Photoluminescence properties of Er doped structure of silicon nanocrystal in silicon dioxide matrix," Journal of Non-Crystalline Solids, Vol. 352, 2006.

    8. Daldosso, N., D. Navarro, M. Melchiorri, C. Gristina, P. Pellegrino, B.Garrido, C. Sada, G. Battaglin, F. Gourbilleau, R. Rizik, and L. Pavaesi, "Er coupled Si nanocluster waveguide," IEEE-Journal in Quantum Confinement, Vol. 12, No. 6, 1607-1617, November 2005.

    9. Kenyon, A. J., W. H. Loh, C. J. Oton, and I. Ahmad, "An analysis of erbium excited state absorption in silicon-rich silica," Journal of Luminescence, Vol. 121, 193-198, 2006.
    doi:10.1016/j.jlumin.2006.07.025

    10. Kik, P. G. and A. Polman, "Gain limiting process in Er-doped si nanocrystal waveguide in SiO2," Journal of Applied Physics, Vol. 91, No. 1, 2002.
    doi:10.1063/1.1418417

    11. Chryssou, C. E., A. J. Kenyon, and C. W. Pitt, "Investigation of energy exchange between silicon nanocrystal and Er ions in silica," Material Science and Engineering B, Vol. 81, 2001.

    12. Kik, P. G. and A. Polman, "Er-doped optical amplifiers on silicon," MRS Bulletin, Vol. 23, No. 4, 48, April 1998.

    13. Snoke, E., P. G. Kik, and A. Polman, "Concentration quenching in erbium implanted alkali silicate glasses," Optical Material, Vol. 5, 159-167, 1996.

    14. Lucarz, F., Silicon Nanocrystal in Er Doped Silica for optical Amplification, MScCreated by Dell Lattitude D820 Project College, London, August 2003.

    15. Lucarz, F. and A. J. Kenyon, "Silicon nanocrystal in Er doped silica for optical amplification," London Communication Symposium, September 2003.

    16. Pacifici, D., G. Franzo, F. Priolo, F. Lacona, and L. D. Negro, "Modeling and perspective of the Si nanocrystal Er interaction for optical amplifier," Physics Review B, Vol. 67, 45301-453013, 2003.
    doi:10.1103/PhysRevB.67.245301

    17. Kik, P. G. and A. Polman, "Toward an Er doped Si nanocrestal sensitized waveguide laser the thin line between gain and loss," F.O.M Institute, 2002.

    18. Khalaj-Amirhosseini, M., "To analyze inhomogeneous planar layers by cascading thin linear layers," Progress In Electromagnetics Research B, Vol. 3, 95-104, 2008.
    doi:10.2528/PIERB07120601

    19. Daldosso, N., M. Melchioori, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarousi, X. Potier, and C. Dufour, "Optical loss and absorption cross section of silicon nanocrystals," Journal of Luminescence, Vol. 121, 344-348, 2006.
    doi:10.1016/j.jlumin.2006.08.083

    20. Chryssou, C. E., A. J. Kenyon, T. S. Lwayama, and C. W. Pitt, "Evidence of energy coupling between si nanocrystal and Er in ion-implanted silica thin films," Appl. Phys. Lett., October 1999.

    21. Kik, P. G. and A. Polman, "Exciton-erbium energy transfer in Si nanocrystal-doped SiO2," Material Science and Engineering B, Vol. 81, 2001.

    22. Woo, Journal of the Korean Physical Society, Vol. 45, No. 5, 1158-1161, November 2004.

    23. Prokopovich, D. V., "Analytical and numerical aspects of Bragg fiber design," Progress In Electromagnetics Research B, Vol. 6, 361-379, 2008.
    doi:10.2528/PIERB08031221

    24. Rostami, A. and S. Makouei, "Temperature dependence analysis of the chromatic dispersion in WII-type zero-dispersion shifted fiber (ZDSF)," Progress In Electromagnetics Research B, Vol. 7, 209-222, 2008.
    doi:10.2528/PIERB08040203

    25. Yang, T., S. Song, H. Dong, and R. Ba, "Waveguide structures for generation of Terahertz Rradiation by electro-optical process in GaAS and Zugep2 using 1.55 μm fiber laser pulses," Progress In Electromagnetics Research Letters, Vol. 2, 95-102, 2008.
    doi:10.2528/PIERL07122806

    26. Shwetanshumala, J. of Electromagn. Waves and Appl., Vol. 20, No. 1, 65-77, 2006.