Vol. 7
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-04-30
High-Gain CMOS Low Noise Amplifier for Ultra Wide-Band Wireless Receiver
By
Progress In Electromagnetics Research C, Vol. 7, 183-191, 2009
Abstract
A 3-5 GHz broadband CMOS single-ended LNA with a new theoretical approach based on least-square algorithm is presented in this paper. The design consists of a wideband input impedance matching network, a cascoded amplifier with inductively-degenerated LNA, and an output impedance matching network. It is simulated in TSMC 0.18 μm standard RF CMOS process. The optimum matching network is designed to minimize the noise figure (NF) and maximize the power gain. The element values of optimum matching network have been obtained using the least-square algorithm. The proposed LNA exhibits a gain in range of 19.9-18.9 dB, over the UWB low-band (3 to 5 GHz). Moreover, the noise figure is obtained in range of 0.6-0.8 dB. Besides, the input P1-dB and IIP3 are -10.5 dBm and 18 dBm, respectively. The proposed method has minimum 4 dB power gain improvement in relative to similar works with constant noise figure. Also, the DC supply is considered to be 1.8 V.
Citation
Ali Dorafshan Mohammad Soleimani , "High-Gain CMOS Low Noise Amplifier for Ultra Wide-Band Wireless Receiver," Progress In Electromagnetics Research C, Vol. 7, 183-191, 2009.
doi:10.2528/PIERC08090903
http://www.jpier.org/PIERC/pier.php?paper=08090903
References

1. Heydari, P. and D. Lin, A performance optimized CMOS distributed LNA for UWB receivers, Proc. Int. Custom Integrated Circuits Conf., 330-333, Sept. 2005.

2. Doh, H. C., Y. K. Jeong, S. Y. Jung, and Y. J. Joo, Design of CMOS UWB low-noise amplifier with cascode feedback, Proc. European Solid-state Circuits Conf., 435-438, Sept. 2004.

3. Molavi, R., S. Mirabbasi, and M. Hashemi, A wideband LNA design approach, Proceedings of the International Symposium on Circuits and Systems, 5107-5110, May 2005.

4. Hodges, D. A., R. Saleh, and H. Jackson, Analysis and Design of Digital Integrated Circuits, 3rd Ed., McGraw-hill, 2004.

5. Dixon, L. C. W., Non-linear Optimization, English University Press, London, 1972.